
E"MASTERY LEARNING

UNE VOIE POUR L'APPRENTISSAGE EL LA REUSSITE

RAPPORTOL Richirghi (Ali Al Dipartalai Distipambols Neormationis

Copie de conservation et de diffusion, disponible en format électronique sur le serveur WEB du CDC : URL = http://www.cdc.qc.ca/parea/701703-comte-michaud-apprentissage-reussite-claurendeau-PAREA-1989.pdf Rapport PAREA, Cégep Andre Laurendeau, 1989. note de numérisation: les pages blanches ont été retirées

* * * SVP partager l'URL du document plutôt que de transmettre le PDF * * *

LE "MASTERY LEARNING" : une voie pour l'apprentissage et la réussite

Rapport de recherche fait au département des Techniques Informatiques

du cégep André-Laurendeau

Par
Paul Comte
et
Gérald Michaud

avec la participation de Louis Bourret Tuan Ngoc Nguyen Lise Dallaire

et la collaboration de René Hivon de l'Université de Sherbrooke

Cette recherche a été effectuée grâce à une subvention du programme d'aide à la recherche sur l'enseignement et l'apprentissage de la Direction Générale de l'enseignement collégial du ministère de l'Enseignement Supérieur et de la Science.

On peut se procurer des copies de ce rapport en s'adressant au:

Cégep André-Laurendeau

A/S Paul Comte ou Gérald Michaud

Département des Techniques Informatiques

1111 rue Lapierre

LaSalle, Qc

H8N 2J4

Le coût de chaque exemplaire est de 10.00\$

Page couverture: Nicole Morisset

Le document fut créé sur Apple Macintosh Plus® avec le traitement de texte Microsoft® Word 3.01b.

Dépot légal Bibliothèque Nationale du Québec 1^{er} trimestre 1989 ISBN 2-920928-04-X

Cégep André-Laurendeau

Table des matières

Table des m	natières	1
Remerciem	ents	V
Introducti	ion	3
Chapitre 1	1 L'énoncé du problème	5
1. Problém	patique	7
2. Cadre th	néorique	7
3.1. Déf 3.2. Pla 3.3. Ens	ion du modèle	11 12
4. Le dével	loppement du SENS ou RAISONNEMENT LOGIQUE	14
5. Objectif	fs de la recherche	15
6. Hypothè	ses de la recherche	15
Chapitre :	2 Description de l'expérimentation	17
1. Type de	recherche	19
2.1. La 2.2. Les 2.2 2.2 2.3. Car 2.3 2.3	ractéristiques des groupes	19 20 20 21 23 24
2.3	3.4. La caractéristique EXPÉRIENCE DU COLLÉGIAL 3.5. La caractéristique TRAVAIL RÉMUNÉRÉ	28

		2.3.7.	La caractéristique COURS DANS LA SESSION	30
		2.3.8.	La caractéristique PRÉALABLE INFORMATIQUE	31
		2.3.9.		
		2.3.10.	La caractéristique EXPÉRIENCE DE PROGRAMMATION	
			La caractéristique POSSESSION D'UN MICRO-	
			ORDINATEUR	34
3.	Desc	ription	de l'approche pédagogique	35
			cation de l'enseignement avant le début des cours	
			ectifs du programme et du cours	
			ılarités pédagogiques	
			ncipales étapes de cette expérimentation furent	
			d'aptitudes en informatique	
			sommatifs	
		4.2.1.		
			4.2.1.1. Sommatif #1	
			4.2.1.2. Sommatif #2	
			4.2.1.3. Sommatif #3	
			4.2.1.4. Sommatif #4	
			4.2.1.5. Sommatif #5	
			4.2.1.6. Sommatif #6	
		422		
			Correction des tests	
			ormatifs	
	4.4.	Le ques	tionnaire PERPE	44
Cł	anite	re 7 D	Présentation et analyse des résultats	45
.	фісі		rescitation et analyst des resultats	73
١.	Repr	ésentat	ivité des 45 sujets	47
	•		•	
2.	Stru	cture et	présentation des résultats	49
	2.1.	Résulta	its aux examens sommatifs	50
		2.1.1.	Examen sommatif 1	51
		2.1.2.	Examen sommatif 2	52
		2.1.3.	Examen sommatif 3	
		2.1.4.	Examen sommatif 4	
		2.1.5.	Examen sommatif 5	
		2.1.6.	Examen sommatif 6	
		2.1.7.	Note finale	
	2.2.	Cohérer	nce interne des évaluations sommatives:	
			ration du raisonnement logique	
		2.3.1.	Caractéristique SEXE	
		2.3.7	Lacacteristique Groupe il appartenante	n /
		2.3.2. 233		
		2.3.2. 2.3.3. 2.3.4.	Caractéristique AGE	63

	2.3.5. Caractéristique TRAVAIL REMUNERE	65
	2.3.6. Caractéristique STATUT DE L'ÉTUDIANT	
	2.3.7. Caractéristique COURS DANS LA SESSION	
	2.3.8. Caractéristique PRÉALABLE INFORMATIQUE	
	2.3.9. Caractéristique MANIPULATION D'UN MICRO	
	2.3.10. Caractéristique EXPÉRIENCE DE PROGRAMMATION	70
	ORDINATEUR	71
	2.3.12. Le problème de ceux qui possèdent un micro-	
	ordinateur	72
	2.4. Résumé	
	2.5. Analyse du Perpe	77
Ch	napitre 4 Portée et implications de ces résultats	79
1.	Avons-nous amélioré le taux de réussite?	81
2.	La qualité de la réussite	82
3.	La cote Z et le mastery learning	83
4.	Avons-nous contribué à développer les habiletés au	
	"raisonnement logique"?	83
5.	Raisonnement logique et formation fondamentale	84
6.	Des portées et implications secondaires	85
Co	onclusion	89
Ré	férences	93
Аг	nnexes	
Те	st de corrélation de PearsonAn	nexe A
Te	st t de Student pour les 45 sujetsAn	nexe B
Te	est du Chi ² An	nexe C
Te	est t de Student pour les 18 sujetsAn	inexe D
Te	st t de Student pour les 27 sujetsAr	nexe E
DI:	an de cours détaillé	nexe F

Plan de cours général	Annexe G
Dossler personnel	Annexe H
Information personnelle	Annexe I
Protocole d'expérimentation	Annexe J
Fiche étudiant	Annexe K
Résultats aux tests	Annexe L
Données brutes sur la description des sujets	Annexe M

Remerciements

Si nous avons pu mener à terme ce travail de recherche nous le devons à la collaboration, à l'appui, à l'encouragement et à la patience de nombreuses personnes.

Nous voulons donc remercier pour sa collaboration stimulante et formatrice René Hivon de l'Université de Sherbrooke. Grâce à ses conseils, à l'apport de ses connaissances concernant aussi bien le modèle de Bloom que la méthodologie de la recherche et des calculs statistiques, nous avons pu d'abord apprendre et aider nos étudiantes et nos étudiants puis, produire ce rapport.

Nous voulons exprimer notre gratitude également au groupe de recherche Performa sur le **Mastery Learning** plus particulièrement à Pierre Matteau et Jacques Gilbert pour la bibliographie préalablement analysée et commentée.

Merci aux professeurs de sciences humaines du cégep de Shawinigan Jean-Yves Morin et Pierre Deshaies qui nous ont permis d'approfondir par échanges d'expériences notre compréhension du modèle. Merci également à nos collègues du département de Techniques Informatiques, Sylvain Béland, Suzanne Latif, Luc Manseau et Ana-Paula Cordeiro pour les discussions stimulantes.

Nous avons pu bénéficier de la collaboration de la direction du collège. Nous pensons en particulier à Germain Godbout directeur général, à Denis Lefebvre et Normand Bernier directeurs des services pédagogiques.

Merci à Robert Gauthier du service d'informatique du collège pour son aide avec le traitement statistique de nos données.

Sophie Dorais a répondu à notre appel toutes les fois que ce fut nécessaire. Son encouragement continuel a été apprécié.

Merci à Marie-Andrée Gaboury pour la correction d'épreuves.

Nous avons pu apprécier le soutien et la collaboration de Gilles St-Pierre et de Claudette Rhéaume, responsables du programme PAREA.

Enfin nous voulons remercier nos conjointes Sylvie, Karen, Suzanne et Lien pour leur patience et leur compréhension.

Introduction

Introduction

A travers les Rapports de recherche sur la réussite, les échecs et les abandons qui sont le résultat des préoccupations de toutes les instances du réseau collégial depuis quelques années, il est un fil conducteur qui semble prendre de plus en plus d'importance, c'est celui de l'aide à l'apprentissage. Voilà une expression qui résume de façon essentielle à notre avis la tâche de tout éducateur, qu'il soit enseignant, professionnel ou administrateur, une expression qui est à la fois conception de l'enseignement et moyen d'agir: aider à apprendre.

Dans une communication récente Sophie Dorais¹ disait très justement qu'on doit voir dans l'aide à l'apprentissage deux modèles, le premier étant celui des actions extraordinaires: centres d'aide à l'apprentissage, cours spéciaux etc., le second étant celui des actions ordinaires: les moyens mis en place par les enseignantes et les enseignants préoccupés par la qualité des apprentissages de leurs élèves au sein de leur propre classe.

Le Mastery Learning dont Bloom disait justement que "ce n'est rien d'autre que du bon enseignement" s'inscrit dans cette deuxième perspective. Tout au long de notre recherche, nous avons été préoccupés par l'aide à l'apprentissage; nous étions convaincus que la majorité de nos élèves pouvaient réussir si nous mettions en place un ensemble de moyens favorisant l'éclosion des conditions nécessaires à la réussite: connaissance des préalables de chacun, information spécifiée de nos attentes à leur égard (objectifs), encadrement de leur travail par un diagnostic fréquent (évaluation formative) et prescriptions d'enseignement correctif très précises. Un travail d'équipe devait nous permettre d'assurer cohérence et qualité à l'entreprise.

Ce sont les résultats de cette expérience, souvent exigeante mais aussi très gratifiante que nous vous communiquons dans ce rapport de recherche. Le *chapitre 1* intitulé **l'énoncé du problème** définit la problématique et explique plus particulièrement le modèle. Au *chapitre 2*, le lecteur pourra prendre connaissance des données de l'expérimentation: durée, sujets, caractéristiques des groupes, instruments de mesure alors qu'au *chapitre 3* il sera à même de lire la présentation des résultats. Le *chapitre 4* enfin fera ressortir la portée et les implications des résultats.

¹ Conseillère pédagogique au collège André-Laurendeau

Chapitre I L'énoncé du problème

1. Problématique

Le taux de réussite dans le programme de Techniques Informatiques au Cégep André-Laurendeau est de 30% depuis l'implantation du programme il y a quatre ans. Désireux d'avoir des explications à ce problème, deux d'entre nous, Gérald Michaud et Nguyen Ngoc Tuan font à l'automne 1986, une enquête ainsi qu'une analyse statistique des bulletins cumulatifs uniformes. Nous découvrons qu'il y a une corrélation très nette entre la réussite au programme d'informatique et la note finale du cours 420-101 (Logique de programmation). Les résultats démontrent en effet que 91% de ceux qui n'ont pas réussi à compléter le D.E.C. en informatique ont eu une note inférieure à 80% au cours Logique de programmation. Les résultats démontrent aussi que 49% de ceux qui ont réussi en informatique ont obtenu une note de 80% ou plus au cours Logique de programmation.

Les enseignants sont d'avis que le cours **Logique de programmation** est un *"cours-test"* qui demande l'application du sens logique de l'élève. En informatique, ce sens logique est associé à la capacité d'établir des rapports, de traduire en symboles mathématiques ou logiques, des idées ou des opérations; c'est aussi la capacité d'analyser un problème et d'organiser en une suite logique les étapes de la solution.

Puisque l'un d'entre nous avait déjà expérimenté avec succès ce qu'il est convenu d'appeler la **pédagogie de la maîtrise**, ou le **Mastery Learning**¹, la question s'est posée de savoir si l'application de cette approche pédagogique pouvait améliorer le sens logique et les résultats des élèves au cours **Logique de programmation**.

Ce rapport est le sommaire de notre application du modèle pédagogique du **Mastery Learning** au cours **Logique de programmation** à l'automne 1987 au Cégep André-Laurendeau.

2. Cadre théorique

L'application du **Mastery Learning** dans les écoles est assez récente. En effet, on utilise le modèle du **Mastery Learning**² depuis à peine 25 ans. Par contre, la philosophie sous-jacente à cette pédagogie date de plusieurs

Pour les fins de ce rapport, nous utiliserons le terme anglais "Mastery Learning"

Pour de plus amples détails sur le Mastery Learning, un guide méthodologique est disponible via PERFORMA

siècles. Il convient donc d'examiner en premier lieu cette philosophie ainsi que son évolution à travers l'histoire... Nous ne vous en présenterons ici que les principaux éléments.

Le postulat central du **Mastery Learning** affirme que la plupart des élèves peuvent apprendre presque parfaitement n'importe quoi si leurs préalables sont adéquats et si les conditions d'apprentissage sont favorables. Et quand nous disons *"la plupart des élèves"*, nous affirmons que 80% et plus d'une classe peut maîtriser la matière ! Ceci contraste de façon radicale avec la conception traditionnelle de l'enseignement selon laquelle les élèves sont voués à obtenir des résultats qui suivent une distribution normale.

Cette conception de l'enseignement n'est pas nouvelle. On la retrouve chez Coménius et Pestalozzi au Moyen Age et chez Herbert au 19^{ième} siècle. Cependant, c'est John B. Carroll en 1963 qui est à l'origine du modèle actuel du **Mastery Learning**. Dans son article "A Model for School Learning", Carroll définit le mot aptitude d'une nouvelle façon. Traditionnellement l'aptitude d'un élève était définie par le niveau qu'il pouvait atteindre dans un espace de temps fixe. Ceci amenait logiquement à classifier les élèves dans les catégories bon et mauvais. Carroll suggéra l'alternative suivante: que l'aptitude de l'élève soit définie comme une mesure du temps requis pour qu'il atteigne un niveau d'apprentissage prédéfini; les élèves seraient donc considérés comme étant soit rapides, soit lents. Notons aussi qu'en psychologie traditionnelle, aptitude est un talent inné, un potentiel, une capacité ou une prédisposition à un certain niveau de performance avant même que ne commence l'apprentissage. Le modèle de Carroll sera examiné en détail dans la prochaine section.

Benjamin Bloom a le mérite d'avoir adapté le modèle théorique de Carroll afin d'en faire une stratégie d'enseignement utilisable. Psychologue reconnu, Bloom était d'accord avec la théorie classique de la courbe normale des aptitudes. Il avait même découvert une très forte corrélation (+ 0,85) entre les résultats scolaires de la 3^{ième} et de la 11^{ième} année. C'est en réaction à ce déterminisme apparent qu'il s'appropria le modèle de Carroll en y ajoutant des éléments fonctionnels majeurs: spécification des objectifs, modularisation de la matière, évaluation formative, feedback et enseignement correctif...

Bloom expérimenta le **Mastery Learning** dans plusieurs écoles et systèmes scolaires vers la fin des années '60. Et toujours les résultats étaient les mêmes: baisse radicale du taux d'échecs et d'abandons, améliorations qualitatives et quantitatives des réussites, plus grande satisfaction des élèves. Plus tard, ses assistants de recherche ont amélioré et modifié légèrement

le modèle original de Bloom. Notons entre autres les travaux de J. H. Block et de L. Anderson et ensuite ceux de Thomas Guskey.

Aujourd'hui, la pédagogie du **Mastery Learning** est utilisée à travers le monde entier. Aux États-Unis seulement, à peu près 1 million d'élèves suivent des cours organisés selon le modèle du **Mastery Learning**. On l'utilise à peu près à tous les niveaux scolaires, de la maternelle à l'université. Le **Mastery Learning** fonctionne; il continue de se répandre à travers les systèmes d'éducation...

3. Explication du modèle

Regardons le modèle théorique de Carroll tel que présenté en 1963 dans "A Model for School Learning". En termes mathématiques, on définit le niveau d'apprentissage comme suit:

Niveau d'apprentissage =

temps écoulé temps requis

Donc, le niveau d'apprentissage est une fonction du temps écoulé divisé par le temps requis pour faire cet apprentissage; ceci s'applique de façon individuelle pour chaque élève. Si une enseignante ou un enseignant fixe un niveau d'apprentissage précis, certains élèves auront besoin de plus de temps que les autres pour atteindre ce niveau (temps requis); de plus, les élèves mettront un effort différent et auront un encadrement différent qui les aidera à atteindre ce niveau (temps écoulé). Plus précisément, Carroll refait l'équation comme suit:

Niveau d'apprentissage =

persévérance + chance d'apprendre
aptitude + [qualité d'enseignement + compréhension des directives]

Parmi ces cinq variables, l'enseignante ou l'enseignant a la possibilité d'en influencer directement trois: la chance d'apprendre qui se résume au temps alloué pour l'apprentissage, la persévérance de l'élève qui peut être suscitée et encouragée, la qualité de l'enseignement qui est sous le contrôle direct de l'enseignante ou de l'enseignant. Les crochets dans le dénominateur indiquent que dans des conditions idéales, l'aptitude serait le seul dénominateur de l'équation.

En bref, Carroll dit qu'il faut que l'enseignante ou l'enseignant ait une influence sur les paramètres globaux qui s'appliquent à la classe en entier de même que sur les paramètres individuels qui s'appliquent à chaque élève. Mais comment faire? Dans notre système scolaire, il est impensable de faire de l'enseignement un à un pour chaque élève d'une classe.

Bloom nous présente une application réalisable du modèle de Carroll, modèle qui gravite autour de l'enseignement correctif et de l'évaluation formative. Un de ses assistants, J. H. Block, a écrit un livre méthodique à l'intention des enseignantes et des enseignants qui veulent adapter leurs cours au modèle Mastery Learning.

Le **Mastery Learning** utilise des stratégies de groupe orientées vers chaque individu mais dont le rythme est contrôlé par le professeur. Suivons la démarche suggérée par Block afin de modifier un environnement pédagogique traditionnel en un système qui utilise pleinement les techniques du **Mastery Learning**. Selon Block, il y a 4 étapes fondamentales:

- 1) Définition de la maîtrise.
- 2) Planification de la maîtrise.
- 3) Enseignement en fonction de la maîtrise.
- 4) Correction en fonction de la maîtrise.

Chaque thème peut être traité individuellement.

3.1. Définition de la maîtrise

La première étape est de définir la tâche à accomplir, l'objectif général du cours. Il faut ensuite spécifier clairement les objectifs terminaux du cours en préparant, par exemple, un examen final basé sur ces objectifs. Une autre tâche essentielle est de hiérarchiser et organiser le contenu. Chaque unité a une cohésion logique qui la différencie des autres. Les objectifs terminaux associés à chaque unité sont clairement identifiés en termes de comportements observables et mesurables. Block suggère que chaque unité occupe à peu près 10 heures d'enseignement.

Guskey propose une méthodologie détaillée qui aboutit à un **tableau des spécifications**. Ce tableau indique les comportements attendus de l'élève pour chaque niveau de la taxonomie de Bloom: connaissance de faits, compréhension de règles, application de procédés; ensuite traductions, analyses et synthèses, et finalement critiques.

3.2. Planification de la maîtrise

Afin de bien réussir l'étape subséquente (enseigner en fonction de la maîtrise), il faut que chaque unité soit complètement préparée avant que l'enseignement ne débute.Le professeur doit imaginer le déroulement de l'unité, les problèmes qui peuvent surgir, les délais possibles, et il doit avoir des alternatives préparées pour ces cas. Il rédigera donc un ou plusieurs tests formatifs dont le but sera de vérifier si les élèves ont atteint le niveau de maîtrise de cette unité (disons 80%). Notons que ce test ne contribue pas à la note finale. Par contre, les évaluations dites sommatives sanctionnent un cours en partie ou en entier. Si un pourcentage significatif de la classe n'a pas atteint le niveau de maîtrise, il faut faire des activités correctives afin de remédier à la situation. L'enseignement correctif le plus efficace est normalement celui qui est présenté selon une méthode différente (pair aidant, audio visuel, etc...)

3.3. Enseignement en fonction de la maîtrise

Puisque la phase de préparation est exigeante pour le professeur, on peut présumer que la partie enseignement proprement dit est plus facile que dans une classe conventionnelle. En un sens c'est vrai puisque le chemin est déjà tracé. Par contre, le professeur se doit d'être plus attentif, ouvert à ses élèves afin de détecter rapidement ceux qui ont des problèmes. Après une unité, un test formatif donne une image fidèle du niveau de maîtrise de tous et chacun. Ceux qui ont atteint le seuil de performance sont acheminés vers des activité d'enrichissement; les autres font du travail correctif afin d'atteindre bientôt ce seuil. Cette procédure est répétée durant la durée du cours. À la fin d'une ou de plusieurs unités, un examen sommatif est administré. On peut aussi faire de l'évaluation continue dans le cadre d'une stratégie Mastery Learning. Dans ce cas, les évaluations sont plus ponctuelles.

3.4. Correction en fonction de la maîtrise

Dans un système **Mastery Learning** complet, il y aurait 2 notes finales possibles: A (maîtrise) et INC (incomplet). Mais les contraintes de notre système pédagogique font qu'il est préférable de donner une note à chacun selon son mérite; les A, B, C, D, etc... sont alors distribués. Dans le modèle traditionnel le nombre de notes A est limité et très valorisé, dans un système **Mastery Learning** le nombre de notes finales A est théoriquement égal au nombre d'élèves en classel Si ces notes A représentent vraiment la maîtrise à un haut niveau d'objectifs raisonnables et mesurables, le professeur se trouve dans une position moralement impeccable.

4. Le développement du SENS ou RAISONNEMENT LOGIQUE

Nous sommes aussi particulièrement préoccupés par le développement du sens logique que nous appellerons désormais raisonnement logique dans le cadre de ce rapport. Les deux expressions sont pour nous synonymes. Notre réflexion et celle de nos collègues nous ont d'abord amenés à voir les capacités de raisonnement logique de l'élève en tant que préalables à la réussite du cours 420-101 justement nommé logique de programmation. En d'autres termes, l'idée généralement reçue chez les professeurs d'informatique était que l'atteinte des objectifs du cours était fonction du niveau de capacité de raisonnement logique de l'élève.

Or la pensée actuelle sur la **formation fondamentale** (Laliberté 1988) de même que les recherches de Torkia-Lagacé (1981) de Desautels (1978, 1985) et plus récemment du groupe **Démarches** (1988) laissent entendre que le développement du **raisonnement logique** doit être un **objectif** de l'enseignement collégial et non un **préalable** essentiel. Nous croyons que des cours tels celui du groupe **Démarches** peuvent être utiles pour plusieurs catégories d'élèves mais nous croyons également que certains aspects des champs disciplinaires sont aussi aptes à développer le **raisonnement logique** à la condition, bien sûr, que cet objectif soit inscrit dans la planification de l'enseignement et que des moyens adéquats soient mis en oeuvre pour l'atteindre.

Pour nous, donc, le sens ou raisonnement logique s'apparente à la théorie piagétienne des opérations formelles: combinatoires, probabilités ou proportions, logique des propositions. Les épreuves que nous utiliserons aux pré-test et post-test, sauf la première portant sur la compréhension verbale seront des épreuves de niveau conceptuel qui nous permettront de mesurer les capacités et surtout l'évolution des capacités de nos élèves en relation avec les diverses composantes du raisonnement logique.

5. Objectifs de la recherche

Nos objectifs de recherche sont les suivants :

- 1. Améliorer le rendement et la qualité des apprentissages des étudiantes et des étudiants en informatique.
- 2. Développer le "sens logique" des étudiantes et des étudiants par l'utilisation du modèle de la pédagogie de la maîtrise.

6. Hypothèses de la recherche

Nos hypothèses de recherche sont les suivantes:

- 1. Comparativement aux étudiantes et aux étudiants des années antérieures, les étudiantes et les étudiants ayant suivi un enseignement à partir des principes de la pédagogie de la maîtrise obtiendront un résultat significativement supérieur.
- 2. L'application du modèle de la pédagogie de la maîtrise permettra de développer chez l'étudiante et chez l'étudiant de façon significative des aptitudes au "sens logique".

Chapitre 2

Description de l'expérimentation

Dans ce chapitre nous décrirons le type de recherche que nous avons effectuée et les conditions dans lesquelles l'expérimentation s'est déroulée. Nous exposerons notre approche pédagogique et décrirons les instruments de mesure utilisés.

1. Type de recherche

Nous avons choisi de faire une recherche exploratoire suivant un protocole pré-expérimental. Nous n'avions pas de groupe contrôle et les sujets n'ont pas été pris aléatoirement. Tous les élèves inscrits en Techniques Informatiques à la session d'automne 1987 furent sujets de l'expérimentation. La recherche a eu lieu auprès de quatre groupes dans un contexte normal.

2. Conditions de l'expérimentation

Dans cette section de chapitre nous traiterons de la durée de la recherche, des sujets et des onze caractéristiques retenues.

2.1. La durée

L'expérimentation s'est déroulée lors de la session d'automne 1987. Le cours 420-101 **Logique de programmation** est un cours de 75 heures réparti en deux séances de 2.5 heures par semaines. Ces 30 séances sont réparties sur 17 semaines à l'éducation régulière et sur 15 semaines à l'éducation des adultes.

2.2. Les sujets

On trouvera sous cette rubrique trois parties: l'inscription au cours, les sujets retenus et les causes d'absence aux tests.

2.2.1. L'inscription au cours

Le cours 420-101, **Logique de programmation**, est le premier cours qu'un élève inscrit au programme 420 doit suivre. Il n'est offert qu'à l'automne pour la clientèle venant du secteur régulier et pour la clientèle ISPJ; il est offert aux deux sessions pour les adultes des cours du soir.

À l'automne 1987, 80 élèves étaient inscrits. Avant le début des cours, sur réception des listes de classes, chaque élève s'est vu attribuer un numéro d'identification. Sur ces quatre listes préliminaires nous retrouvons donc 80 numéros identifiant tous les sujets.

Les numéros suivants ont été attribués aux élèves:

- 1 à 39, élèves du régulter
- 101 à 122, élèves de l'éducation aux adultes
- 201 à 219, élèves du groupe ISPJ

2.2.2. Les sujets retenus pour la recherche

Parmi les sujets inscrits au cours 420-101, quelques-uns ont abandonné dès le début de la session. Le tableau suivant nous montre le nombre de sujets retenus pour la recherche.

Sujets inscrits:	80
Abandons :	11
Sujets retenus :	

De ces sujets, huit (8) ne se sont jamais présentés ou n'ont assisté qu'au premier ou au deuxième cours. Deux (2) sujets ont abandonné pour raison de santé. Un (1) sujet a abandonné pour cause de déménagement.

C'est ainsi que onze (11) sujets furent exclus de la recherche. Il nous restait donc un total de 69 sujets pour l'expérimentation.

À un moment ou à un autre, pendant l'expérimentation, quatorze (14) sujets ne se sont plus présentés en classe. En plus de ces sujets, dix (10) se sont absentés à l'une ou l'autre des deux séances de passation des tests d'aptitudes. Nous avons donc 24 dossiers incomplets sur un total de 69.

	Sujets
Ont manqué un test ou plus : Ont passé tous les tests :	24 45
Total	 69

On retiendra donc dès maintenant les nombres de 45 et 69 sujets auxquels nous nous référerons constamment.

Le tableau suivant montre la variation du nombre de sujets ayant passé chaque test. Fait à remarquer, ni le pré-test ni le post-test n'étaient obligatoires; il en sera de même pour les examens sommatifs.

Pré-test	51	52	53	54	S 5	S6	Post-test
69	69	69	68	66	62	55	48

2.2.3. Qui n'était pas aux tests et pourquoi?

Voici une description détaillée de l'explication de la présence ou de l'absence des sujets aux tests.

- Au pré-test : 7 sujets ne se sont pas présentés malgré la tenue de trois séances de passation du test (62 présents).
- Au sommatif 1 : tous y étaient (69 présents).
- Au sommatif 2 : tous y étaient (69 présents).
- Au sommatif 3: 1 sujet absent sur 69 (68 présents).
 Le sujet #204 a quitté le cégep, il n'avait assisté qu'à 8 des 10 premiers cours.
 Raison du départ : retour au travail.
- Au sommatif 4: 2 sujets absents sur 68 (66 présents).
 Le sujet #210 a quitté le cégep après le formatif 4.1, il n'avait assisté qu'à 7 des 14 premiers cours.

Raison du départ : conflit avec son horaire de travail.

- Le sujet #005 a quitté le cégep après le 12^{ième} cours.
Raison du départ : inconnue.

Au sommatif 5 : 4 sujets absents sur 66 (62 présents).

- Le sujet #031, a abandonné tous les cours, il a quitté le cégep.

Raison du départ : inconnue.

- Le sujet #108

Raison du départ : conflit avec son horaire de travail, il travaillait le soir.

- Le sujet #109

Raison du départ : sujet adulte; abandon pour motif inconnu.

- Le #217, absent à ce test mais présent au sommatif 6.

Raison de l'absence : inconnue.

Au sommatif 6 : 8 sujets absents sur 63.

-Le sujet #029 a abandonné tous ses cours.

Raison du départ : inconnue.

-Le sujet #035 a abandonné tous les cours.

Raison du départ : cause de santé, retour aux études très difficile.

-Le sujet #101

Raison du départ : conflit avec horaire de travail.

-Le sujet #107

Raison du départ : manque de confiance en soi.

- Le sujet #110

Raison du départ : cause de maladie, hospitalisation.

-Le sujet #113

Raison du départ : découragé par le résultat au sommatif 5.

-Le sujet #121

Raison du départ : a abandonné en même temps que le sujet#108.

-Le sujet #212 a abandonné le programme ISPJ.

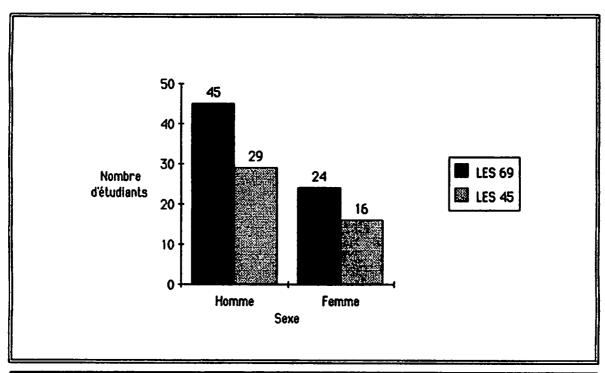
Raison du départ : il avait amassé assez de notes pour passer le cours.

 Au post-test: 21 sujets ne se sont pas présentés malgré la tenue de deux séances de passation du test. De ce nombre 14 sujets avaient déjà abandonné le cours. Donc 7 sujets présents au sommatif 6 ne se sont pas présentés au post-test.

En résumé, on note que 14 sujets ont "abandonné" le cours 420-101. Donc 20% des 69 sujets qui ont commencé le cours ont quitté.

2.3. Caractéristiques des groupes

Nous avons étudié la population selon les 11 caractéristiques suivantes :

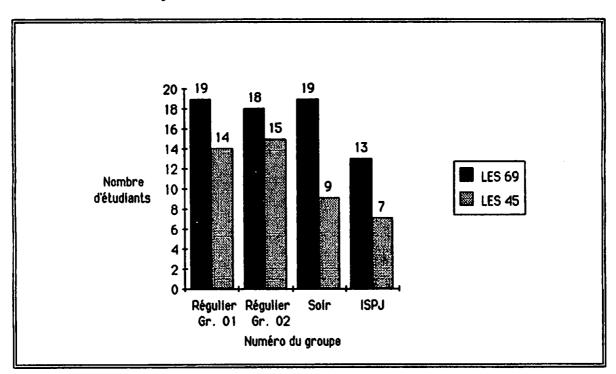

- le sexe
- le groupe d'appartenance
- l'âge
- l'expérience du collégial
- le travail rémunéré
- le statut de l'étudiant
- le nombre de cours dans la session
- les préalables informatiques
- la manipulation préalable d'un micro-ordinateur
- l'expérience de programmation
- la possession d'un micro-ordinateur

Dans les pages qui suivent nous ferons une description complète de ces caractéristiques en décrivant les deux populations: celle **DES 45** et celle **DES 69 SWETS**.

Pour chacune des caractéristiques nous présenterons un histogramme, un tableau et nous en ferons une courte description.

2.3.1. La caractéristique SEXE

En ce qui concerne cette première caractéristique, on notera pour le groupe des 45 SWETS la présence de 64% d'hommes et de 36% de femmes. Pour le groupe des 69 SWETS, les chiffres sont très semblables, soit 65% et 35%.

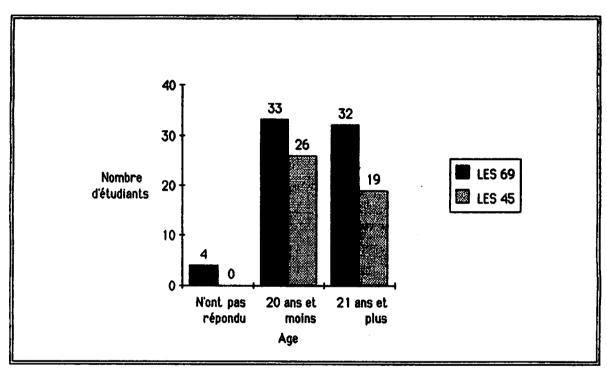

	LES 45		LES 69		Différence	
	F	8	F	8	8	
Homme	29	64	45	65	-1	
Femme	16	36	24	35	+1	
Différence	13	28	21	30		

On retiendra de ces tableaux le fait que plus d'hommes se sont inscrits au cours **Logique de programmation** à la session d'automne 87. Ce qui concorde tout simplement avec les chiffres habituels du programme de Techniques informatiques au collège.

2.3.2. La caractéristique GROUPE D'APPARTENANCE

La deuxième caractéristique est le **groupe** dans lequel le sujet est inscrit. Nous avons quatre groupes de sujets inscrits :

- □ à l'enseignement régulier dans le groupe 01.
- ☐ à l'enseignement régulier dans le groupe 02.
- ☐ à l'éducation des adultes.
- ☐ dans le groupe ISPJ.


	LES 45		LES	69	Différence	
Régulier 01 Régulier 02	F 14 15	% 31 33	19 18	% 27,5 26,0	% +3,5 +7	
Soir ISPJ	9 7	20 16	19	27,5 19,0	-7,5 -3	

On notera que les sujets des deux premiers groupes, donc de l'enseignement régulier, ont participé en plus grand nombre aux épreuves qui leur étaient proposées.

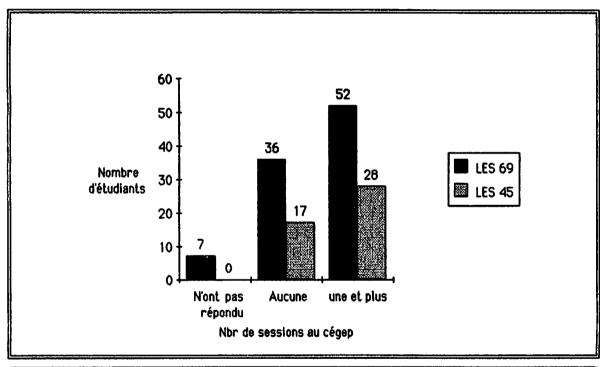
2.3.3. La caractéristique AGE

La troisième caractéristique est l'âge. Nous avons fait deux regroupements :

- ☐ Les sujets âgés de 20 ans et moins.
- ☐ Les sujets âgés de 21 ans et plus.

	LES 45		LES 69		Différence	
	F	2	F	8	8	
20 ans et moins	26	58	33	48	+10	
21 ans et plus	19	42	32	46	-4	
N'ont pas répondu	0	0	4	6	-6	
DIFFÉRENCE	7	16	1	2		

	LES 45	LES 45 65 des 69	
Moyenne	21,38	22,49	1,11
Médiane	20	20	0
Mode	19	19	0

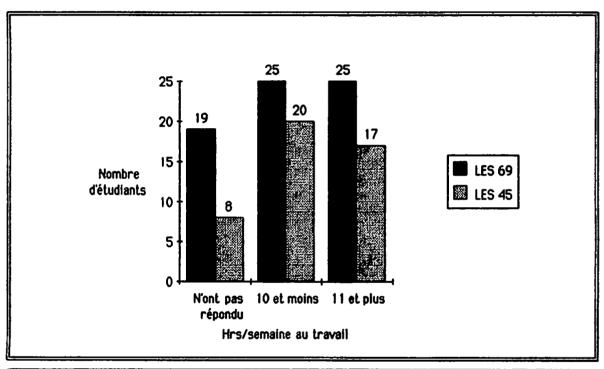

Nous constatons un écart de 16% entre les deux regroupements. Ce sont les sujets de 20 ans et moins qui ont participé en plus grand nombre aux épreuves proposées.

2.3.4. La caractéristique EXPÉRIENCE DU COLLÉGIAL

La quatrième caractéristique étudie le nombre de sessions qu'un sujet a passé au niveau collégial avant d'entreprendre le cours Logique de programmation.

Deux groupes sont formés :

- ☐ Ceux qui n'ont aucune expérience du cégep.
- ☐ Ceux qui ont fait une session ou plus dans le réseau collégial.

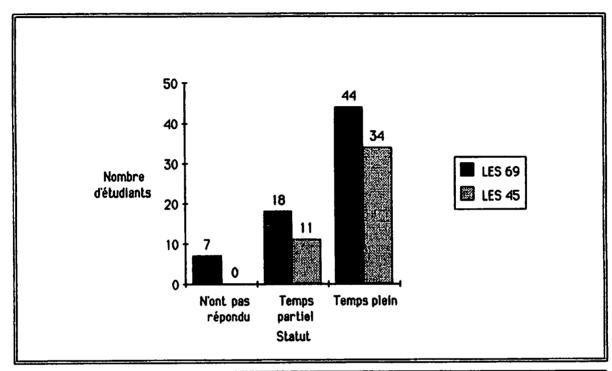

,	LES 45		LES	69	Différence
aucune 1 et plus N'ont pas répondu	F 17 28	% 38 62 0	F 26 36 7	% 38 52 10	% 0 +10 -7
ÉCART	11	24	10	14	

On observe que la proportion des sujets qui ont une expérience du cégep est de 10% plus forte chez LES 45 SUJETS.

2.3.5. La caractéristique TRAVAIL RÉMUNÉRÉ

Pour les fins de la recherche, deux groupes sont formés :

- ☐ Les sujets qui travaillent 10 heures et moins en dehors des heures de cours.
- ☐ Les sujets qui travaillent 11 heures et plus en dehors des heures de cours.

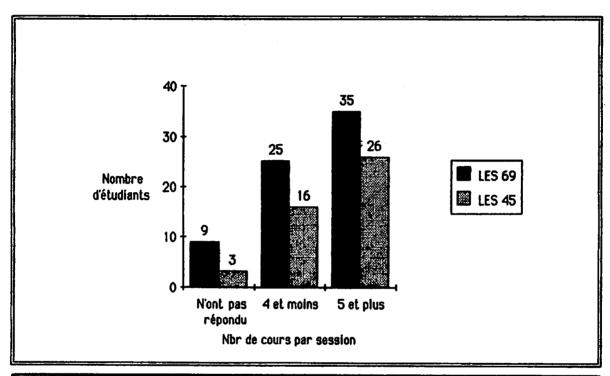

	LES 45		LES 69		Différence	
	F	%	F	8	8	
10 et moins	20	44	25	36	+8 +2	
11 et plus	17	38	25	36	+2	
N'ont pas répondu	8	18	19	28	-11	
ÉCART	3	6	0	0		

Nous remarquons une légère différence entre les deux groupes. Il faudra retenir ici que les sujets ayant un travail rémunéré sont très nombreux.

2.3.6. La caractéristique STATUT DE L'ÉTUDIANT

La sixième caractéristique divise les sujets en deux groupes :

- ☐ Les sujets inscrits à des études à temps partiel.
- ☐ Les sujets inscrits à des études à temps plein.


	LES 45		LES 69		Différence
Temps partiel Temps plein N'ont pas répondu	F 11 34 0	% 24 76 0	F 18 44 7	% 26 64 10	-2 12 -10
ÉCART	23	52	26	38	

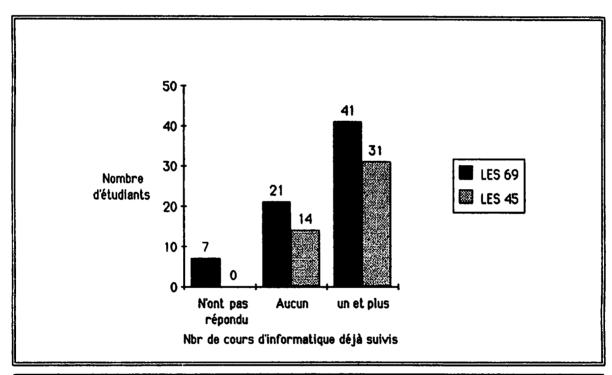
On notera dans ce tableau qu'il y a trois fois plus de sujets à temps plein dans le groupe des 45 SUJETS.

2.3.7. La caractéristique COURS DANS LA SESSION

La septième caractéristique divise les sujets en deux groupes :

- ☐ Les sujets qui sont inscrits à 4 cours et moins dans la session
- ☐ Les sujets qui sont inscrits à 5 cours et plus dans la session.

	LES 45		LES 69		Différence
4 et moins 5 et plus N'ont pes répondu	F 16 26 3	% 35 58 7	F 25 35	36 51 13	8 -1 +7 -6
Différence	10	23	10	15	

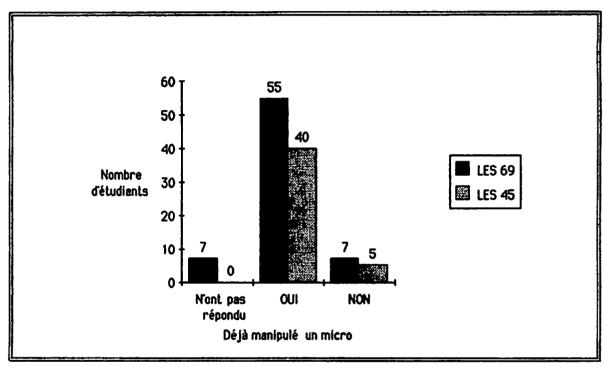

Cette statistique complète et précise la précédente. Les sujets inscrits à plus de 5 cours sont plus nombreux que ceux qui sont inscrits à 4 cours et moins.

2.3.8. La caractéristique PRÉALABLE INFORMATIQUE

La huitième caractéristique est basée sur les connaissances qu'avaient les sujets avant de commencer le cours. Ce sont des connaissances acquises dans des cours d'informatique suivis préalablement.

Nous avons divisé en deux groupes les sujets :

- ☐ Ceux qui n'ont jamais suivi de cours d'informatique.
- ☐ Ceux qui ont déjà suivi un ou plusieurs cours d'informatique.

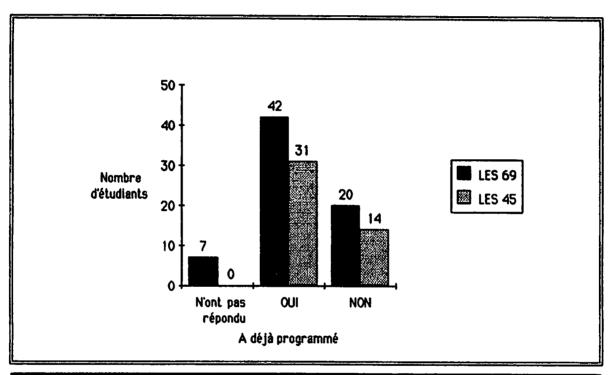

	LES 45		LES 69		Différence	
	F	8	F	8	8	
aucun	14	31	21	30,5] 0,5	
1 et plus	31	69	41	59,5	9,5	
N'ont pas répondu		0	7	10,0	-10,0	
Différence	17	38	20	29		

Nous constatons qu'il y a deux fois plus de sujets qui ont déjà suivi au moins un cours d'informatique, soit au secondaire, soit ailleurs.

2.3.9. La caractéristique MANIPULATION D'UN MICRO

La neuvième caractéristique sert à catégoriser les sujets en deux groupes :

- ☐ Ceux qui n'ont jamais manipulé un micro-ordinateur.
- ☐ Ceux qui ont déjà manipulé un micro-ordinateur.

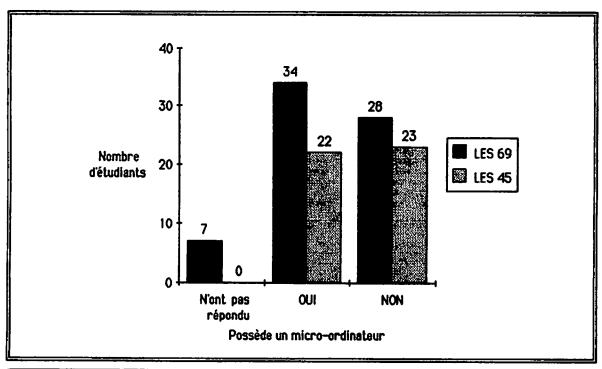

	LES 45		LES 69		Différence	
	F	8	F	8	8	
oui	40	89	55	80	9	
non	5	11	7	10		
N'ont pas répondu	0	0	7	10	-10	
Différence	35	78	48	70		

On remarque qu'une forte majorité, soit 89% de nos sujets ont déjà manipulé un micro-ordinateur.

2.3.10. La caractéristique EXPÉRIENCE DE PROGRAMMATION

La dixième caractéristique sert à catégoriser les sujets en deux groupes :

- ☐ Les sujets qui ont déjà programmé un micro-ordinateur.
- ☐ Les sujets qui n'ont jamais programmé un micro-ordinateur.


	LES 45		LES 69		Différence	
oui	31	% 69	F 42	%	8	
non N'ont pas répondu	0	0	20 7	29 10	-10	
Différence]] 17	38	22	32		

On note que deux fois plus de sujets ont une expérience de la programmation.

2.3.11. La caractéristique POSSESSION D'UN MICRO-ORDINATEUR

La onzième caractéristique sert à catégoriser les sujets en deux groupes :

- ☐ Ceux qui possèdent un micro-ordinateur.
- ☐ Ceux qui ne possèdent pas de micro-ordinateur.

	LES	45	LES	69	Différence		
	F	8	F	8	8		
cui	22	49	34	49	0		
non	23	51	28	41	10		
N'ont pas répondu	0	0	7	10	-10		
Différence	1	2	6	8			

On note que la moitié des sujets possèdent un micro-ordinateur.

3. Description de l'approche pédagogique

On trouvera dans cette troisième partie les informations pertinentes au cours 420-101 tel qu'il fut préparé et donné.

3.1. Planification de l'enseignement avant le début des cours.

- Nous avons établi la liste des objectifs du programme 420 à partir du cahier de l'enseignement collégial et des dernières données du comité de coordination provinciale.
- Nous avons formulé les objectifs terminaux¹ du cours 101.
- Ces objectifs terminaux ont été classés selon la taxonomie de Bloom. Nous avons ordonné la matière pour que les objectifs de connaissance de faits et de règles soient maîtrisés avant de passer à des objectifs d'ordre supérieur.
- Nous avons énuméré pour chaque objectif terminal, les objectifs intermédiaires qui s'y rapportent.
- Nous avons divisé le cours en modules d'enseignement, chaque module se terminant par un test sommatif. Pour faire cette division nous avons déterminé le nombre de rencontres de 2.5 heures nécessaires pour chaque module d'enseignement.
- Ensuite nous avons pondéré les tests entre eux en nous basant sur la durée de chaque module.
- Nous avons conçu les tests sommatifs 1 et 2 et leurs tests formatifs. Nous avons rédigé les solutionnaires et avons ajusté la pondération de chaque question pour refléter son importance relative dans le module.
- Ajoutons ici que nous avons dû continuer la préparation des tests subséquents pendant la session, le temps nous ayant manqué pour préparer d'avance le cours dans tous ses détails.
- Une lettre fut envoyée aux sujets durant l'été 87 les invitant, un certain soir de la semaine précédant la rentrée scolaire, à venir passer la batterie de tests d'aptitudes pour programmeurs.

Dans ce document nous utilisons les termes OBJECTIF TERMINAL et OBJECTIF INTERMÉDIAIRE tels que définis par 8 loom.

3.2. Les objectifs du programme et du cours

Le but du programme de Techniques Informatiques est de former des techniciens en Informatique de gestion.

Les objectifs généraux du programme sont de développer les aptitudes analytiques, conceptuelles, verbales et rédactionnelles du sujet afin qu'il soit en mesure de fonctionner efficacement comme technicien en informatique au terme de sa formation. Le programme vise aussi à développer des attitudes professionnelles dans son travail individuel et dans ses rapports interpersonnels.

Voici la liste des objectifs terminaux que nous avons retenus dans le cours **logique de programmation** pour faire notre expérimentation :

- 1. Définir les principaux concepts reliés au langage algorithmique.
- 2. Identifier les symboles (conventions) utilisés en algorithmie.
- 3. Reconnaître les types de données de base.
- 4. Reconnaître les six étapes de la résolution d'un problème.
- 5. Distinguer les cinq grandes catégories d'instructions.
- 6. Différencier les catégories de structures de contrôle utilisées dans un algorithme.
- 7. Evaluer des expressions.
- 8. Suivre le déroulement d'un algorithme.
- 9. Suivre un algorithme utilisant un diagramme modulaire.
- 10. Traduire un algorithme dans le langage de programmation Pascal.
- 11. À partir d'un problème, développer un algorithme de façon personnelle et le traduire dans un langage donné.
- 12. Vérifier sur ordinateur la logique d'un algorithme.

3.3. Particularités pédagogiques

Le premier cours était différent des autres. Un plan d'accueil a été suivi pour chaque groupe. Plusieurs enseignants et une conseillère pédagogique ont expliqué l'importance du cours **Logique de Programmation** aux sujets. Il y a aussi eu une présentation des fondements théoriques et de la méthodologie du **Mastery Learning**. Nous avons insisté sur les comportements que devraient avoir les sujets. Un plan de cours général, leçon par leçon, fut remis et des consignes précises sur la rédaction du **dossier personnel** ont été communiquées.

Toutes ces activités préliminaires ont pris environ 90 minutes du premier cours. Le reste du cours a été consacré à l'enseignement du module 1.

Nous devons souligner que les quatre groupes ont subi les mêmes tests formatifs et sommatifs au même rythme et ont été corrigés selon les mêmes barèmes.

Nous avons présenté le même corpus théorique à chacun des groupes. Plus particulièrement, la théorie sous-jacente aux **traces d'exécution** et à l'utilisation de la méthode **Warnier-Orr** ont été formalisées.

Nous avons mis les gens en situation d'apprentissage. Ceci veut dire que nous avons délibérément choisi d'utiliser des méthodes d'apprentissage actives. L'utilisation fréquente de tests formatifs entre dans cette philosophie. Après chaque cours, les sujets avaient des travaux et/ou des études à faire à la maison. De plus, après un examen sommatif et avant le cours suivant, les sujets avaient à se préparer théoriquement pour le prochain module par le moyen de lectures ou de devoirs.

Même si chaque cours avait une durée prévue de 2,5 heures, nous avons avisé les sujets qu'une demi-heure additionnelle pourrait être utilisée pour fins de révision ou d'activités correctives.

¹ Yoir en annexe H.

3.4. Les principales étapes de cette expérimentation furent

- La passation du test d'aptitudes! en informatique avant le début de la session; il s'agit du Pré-test.
- La cueillette des informations sur les caractéristiques personnelles des sujets à l'aide de fiches de description².
- L'enseignement proprement dit à partir du modèle du **Mastery** Learning.
- La passation du test d'aptitudes en informatique à la fin de la session que nous appellerons maintenant Post-test.
- La passation du test PERPE permettant de mesurer le degré de satisfaction des sujets à l'égard de la méthode pédagogique utilisée dans le cours et leur perception du professeur.

4. Instruments de mesure

Pour les fins de notre expérimentation et de vérification de nos hypothèses, nous avons utilisé 4 types d'instruments que nous allons décrire ci-dessous:

- 1- Le test d'aptitudes en informatique
- 2- L'examen sommatif
- 3- Le test formatif
- 4- Le questionnaire PERPE

4.1. Le test d'aptitudes en informatique

Pour connaître les aptitudes des sujets au départ et à la fin de l'expérimentation, nous avons utilisé un test externe, **La Batterie d'Aptitudes pour Programmeurs**. Ce test est utilisé par certaines entreprises pour fins de sélection. C'est le seul, à notre connaissance, qui existe en langue française pour ce genre d'évaluation.

Batterie d'aptitudes pour programmeurs, J.M. Palormo, Éditions du Centre de Psychologie Appliquée.

² Voir document à l'annexe I.

La batterie se compose de cinq tests, chronométrés séparément, qui mesurent les aptitudes suivantes:

Compréhension verbale.

Test d'aptitudes à établir des rapports, à communiquer.

Raisonnement.

Test d'aptitudes à traduire en symboles mathématiques des idées et des opérations présentées sous forme de problèmes verbaux.

Séries de Lettres.

Test de raisonnement abstrait, consistant à retrouver un lien logique dans l'ordre d'une série de lettres données.

Aptitude Numérique.

Test mesurant l'aptitude à manipuler des nombres ou l'aptitude à calculer ou estimer rapidement la réponse vraisemblable à des opérations ou des problèmes.

Diagrammes.

Test d'aptitudes à analyser un problème, et à organiser en une suite logique les étapes de la solution.

Le test nous indique six résultats exprimés en rangs centiles: un score global pour l'ensemble de la batterie et un résultat pour chacun des tests.

Tous les sujets ont été convoqués pour passer une première fois ces tests avant le début des cours. Ils ont été invités à les repasser à nouveau une semaine avant la fin de la session. Il est à noter que les sujets ont toujours ignoré jusqu'au dernier moment qu'ils allaient passer une seconde fois le même test.

Tel que le mentionnent les auteurs aux pages 21 et 22 du manuel d'application:

"La Batterie d'aptitudes pour Programmeur apparaît comme un instrument efficace pour prédire la réussite... dans la formation de programmeurs. Comme par la suite, le rendement du programmeur sera considérablement intensifié ou au contraire limité par sa connaissance des possibilités pratiques et des langages propres à l'ordinateur, la réussite lors de la formation est probablement un bien meilleur critère intermédiaire dans ce domaine que dans la plupart des autres."

4.2. Tests sommatifs

Il y a eu six évaluations sommatives. Chacune n'évaluait que la matière prévue et enseignée dans son module respectif. Il n'y avait pas d'examen de reprise. La contribution relative de chaque examen sommatif était proportionnelle à la durée et à l'importance du module dans l'ensemble du cours.

Les types d'examens utilisés sont codés comme suit :

Obj: examen de type objectif.

Ouv : examen de type ouvert, c'est à dire qui inclut des questions à

développement.

Mixte : examen formé d'une partie objective et d'une partie ouverte.

Le tableau suivant présente les caractéristiques des examens sommatifs selon les objectifs, la durée du module, le poids de l'examen sur la note finale, le niveau taxonomique des objectifs, le type d'examen administré et le temps alloué aux sujets pour le compléter.

Examen	Objectif	Durée	Poids		Classe d'objectif					
Sommatif	No.	hrs	8	connaissance	compréhension	application	analyse		men Temps	
1	1 2 3 4	7,5	10	•				obj	30 m	
2	5 6 7	10	13	•	•			obj	45 m	
3	8	12,5	20		•			obj	60 m	
4	9	10	10		•				60 m	
5	10	10	13			•		OUV	2,5 h	
	11						•			
6	12	25	33			•		ouv	_3 h	
total		75	100	6	3	2	1		8.75h	

À noter que la colonne des objectifs correspond aux objectifs terminaux du cours 101 cités à la section **3.2** de ce chapitre.

4.2.1. Conception des tests

On retrouve, dans les sections qui suivent, une courte description de chaque examen sommatif.

4.2.1.1. Sommatif #1

Cet examen mesurait des éléments de connaissances pour les objectifs terminaux #1, #2, #3 et #4. Il comptait pour 10% de la note finale.

Cet examen portait sur la définition de mots-clés, l'identification de types de données et de symboles arithmétiques et logiques. Finalement l'élève devait dessiner les symboles algorithmiques utilisés dans les ordinogrammes et dans la méthode Warnier-Orr.

Notons aussi que les notions présentées dans ce module forment une base de connaissances essentielles pour les cinq autres modules.

4.2.1.2. Sommatif *2

Cet examen évaluait les objectifs de connaissances #5 et #6 et un objectif d'application #7. Il contribuait à 13,3% de la note finale.

L'élève devait :

- Reconnaître et identifier les structures algorithmiques élémentaires en forme ordinogramme et Warnier-Orr.
- □ Dessiner ces mêmes structures

4.2.1.3. Sommatif #3

Cet examen évaluait l'objectif de compréhension #8. Il contribuait à 20% de la note finale.

L'élève devait suivre le déroulement d'un algorithme. Pour ce faire il utilisait une méthode formalisée de rédaction de traces informatiques élaborée par les professeurs du cégep André-Laurendeau.

4.2.1.4. Sommatif *4

Cet examen évaluait l'objectif de compréhension #9. Il contribuait à 10% de la note finale.

L'élève devait suivre le déroulement d'un algorithme modulaire, formé de procédures avec paramètres. Les notions de paramètres passés par valeur et par référence ont été évaluées à l'aide d'un diagramme Warnier-Orr modulaire.

À partir de ce module, nous ne représentons plus les algorithmes avec des ordinogrammes. Ils sont tous écrits sous forme Warnier-Orr.

4.2.1.5. Sommatif #5

Cet examen évaluait l'objectif d'application #10. Il contribuait à 13,3% de la note finale.

L'élève devait traduire des algorithmes en langage Pascal en respectant la syntaxe.

4.2.1.6. Sommatif *6

Cet examen évaluait l'objectif d'analyse #11. Il contribuait à 33,3% de la note finale. De plus l'objectif d'application #12 a été évalué par des travaux personnels mais il n'a pas contribué à la note finale. En effet, vu le contexte de recherche dans lequel nous étions, nous avons choisi de ne pas créditer les travaux pratiques dans la note finale. Selon notre expérience, ces travaux "personnels" sont souvent faits en équipe.

L'élève devait concevoir et rédiger des algorithmes de difficulté moyenne en forme Warnier-Orr.

4.2.2. Correction des tests

Nous avons suivi une méthode de correction identique pour les quatre groupes. Les barèmes étaient les mêmes ainsi que les critères de correction. Durant toute la durée du cours, les enseignants ont constamment vérifié entre eux la répartition des points pour chaque évaluation sommative ou formative.

4.3. Tests formatifs

Les tests formatifs servaient à mesurer l'atteinte des objectifs intermédiaires et ne contribuaient pas à la note finale. Chaque objectif terminal se décomposait en un ou plusieurs objectifs intermédiaires mesurables. On retrouvera en annexe¹ une liste complète de ces objectifs intermédiaires. Règle générale, il y avait deux tests formatifs par module. Fidèles à la méthodologie du **Mastery Learning**, nous avons utilisé les résultats des tests formatifs afin d'évaluer le degré de maîtrise des objectifs. Les sujets qui n'avaient pas atteint le seuil de maîtrise (80%) devaient faire des activités correctives et subir un deuxième test formatif sur les mêmes objectifs.

Il y avait 11 évaluations formatives prévues dans le plan de cours et bien entendu, les résultats de ces évaluations ne contribuaient pas à la note finale.

4.4. Le questionnaire PERPE

Ce questionnaire permet de connaître l'appréciation du professeur par les élèves. Les trois enseignants ont donc été soumis à une évaluation dont le résultat positif est une constante caractéristique d'un enseignement utilisant le **Mastery Learning**. On en retrouvera les résultats au *chapitre 3*.

¹ Voir annexe F. Plan de cours détaillé

Chapitre 3

Présentation et analyse des résultats

Dans ce chapitre, nous présenterons les résultats obtenus lors de l'expérimentation. Nous expliquerons d'abord pourquoi nous avons choisi d'analyser en détail les résultats de seulement 45 des 69 sujets et nous démontrerons que ces 45 sujets sont véritablement représentatifs de la population complète. Nous procéderons ensuite à l'analyse détaillée des examens sommatifs en examinant surtout les moyennes et les écarts-types des résultats, et nous vérifierons la validité interne de nos examens sommatifs en analysant les résultats de ceux-ci par rapport aux résultats obtenus suite à la batterie de tests d'aptitudes en informatique. Dans un troisième temps nous examinerons les résultats du pré-test et du post-test en fonction des onze caractéristiques des groupes. Enfin nous ferons ressortir les points saillants du questionnaire PERPE.

1. Représentativité des 45 sujets

Comme nous l'avons vu au chapitre précédent (page 20), 69 des 80 sujets du groupe original ont été retenus pour analyse. Rappelons que les 11 personnes exclues l'ont été pour cause d'abandon rapide au tout début de l'expérimentation. De ces 69 sujets, nous avons eu 45 sujets qui ont participé à tous les examens sommatifs ainsi qu'au pré-test et au post-test. Afin de démontrer hors de tout doute que ces 45 sujets ne représentent pas une élite par rapport au reste du groupe des 69 sujets, nous avons fait un test t de Student pour vérifier les résultats comparatifs de ces 2 groupes.

Diagrammes 48

Total

Voici maintenant un tableau démontrant de façon détaillée les résultats obtenus au pré-test, aux examens sommatifs ainsi qu'au post-test:

Instrument	N	MOY	E. T.	N	MOY	E. T.	t	Signif
Pré-test								
Comp. verb.	62	29,56	24,28	45	32,66	23,66	0,13	Non
Raisonn.	61	42,73	20,67	45	44,28	19,95	0,08	Non
Série lett.	62	53,51	26,70	45	56,13	27,27	0,15	Non
Apt. Numér.	62	35,06	22,99	45	34,86	22,89	0,01	Non
Diagrammes	62	59,24	18,43	45	62,24	16,79	0,18	Non
Total	62	45,29	19,59	45	48,64	17,33	0,19	Non
Somm. 1	69	93,27	7,88	45	94,75	6,48	0,23	Non
Somm. 2	69	84,52	14,85	45	88,44	10,12	0,38	Non
Somm. 3	68	82,00	15,13	45	86,66	14,41	0,32	Non
Somm. 4	66	87,25	14,45	45	90,33	12,44	0,24	Non
Somm. 5	62	79,25	16,71	45	81,51	13,10	0,17	Non
Somm. 6	55	80,96	20,99	45	83,69	18,65	0,14	Non
Note finale	54	84,74	11,73	45	85,95	10,90	0,11	Non
Post-test			·					
Comp. verb.	48	42,39	25,05	45	42,04	24,85	-0,01	Non
Raisonn.	48	55,02	17,53	45	56,22	17,27	0,01	Non
Série lett.	47	71,83	23,48	45	72,71	23,61	0,03	Non
Apt. Numér.	48	40,18	19,65	45	41,00	19,54	0,04	Non

Le test t de Student indique une différence significative au seuil P = 0.05 si sa valeur est égale ou plus grande à 1,67 pour N = 60. Donc, nous constatons qu'il n'y a aucune différence significative entre les résultats des 45 sujets et des 69 sujets, et ceci est vrai pour le pré-test, le post-test, la note finale de même que pour chacune des évaluations sommatives plus détaillées.

73,68 | 15,49 | 45

60,35

75,04 | 14,88 |

61,66

0.09

Non

Non

En général, nous avons produit nos analyses statistiques à l'aide du logiciel SPSS. Certains tableaux, dont la plupart des statistiques purement descriptives, ont été plus facilement produits avec le logiciel Reflex / The File Manager.

Dans plusieurs cas, nous avons utilisé le test **t** de Student afin de comparer deux regroupements. En général, ce test s'applique à deux populations qui ont une distribution normale de leurs résultats. Nous savons déjà que plusieurs de nos regroupements ne démontrent **pas** une distribution normale¹.

2. Structure et présentation des résultats

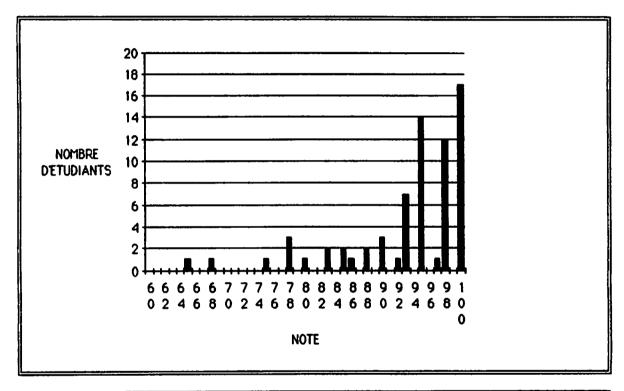
Nous présenterons dans la partie suivante les résultats obtenus par les participants aux divers examens et tests. Dans la section 2.1, on retrouvera les résultats des examens **sommatifs**, c'est-à-dire ceux qui contribuent à la note finale. La section 2.2 présentera les résultats obtenus par les participants à la batterie de tests d'aptitudes pour programmeurs.

Cependant, il est tout à fait correct d'utiliser le test t de Student pour des regroupements qui ne suivent pas une distribution normale si le nombre de cas est assez élevé. Si n est plus grand ou égal à 15, le test t est parfaitement valable. (Référence: Introductory Statistical Analysis de Donald L. Harnett et James L. Murphy, page 360).

2.1. Résultats aux examens sommatifs

La première hypothèse de la recherche était la suivante :

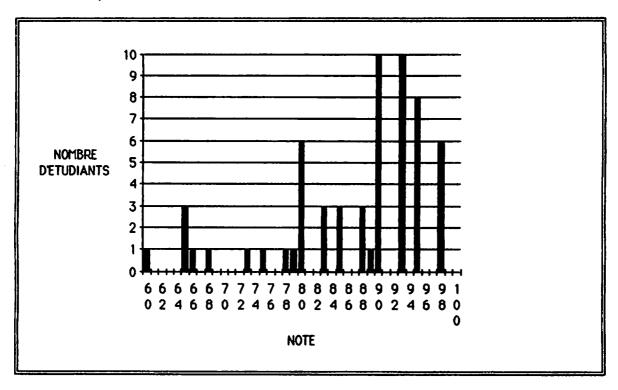
Comparativement aux étudiantes et aux étudiants des années antérieures, les étudiantes et les étudiants ayant suivi un enseignement à partir des principes de la pédagogie de la maîtrise obtiendront un résultat significativement supérieur.


Il y avait 6 examens sommatifs qui contribuaient à la note finale de ce cours. Nous examinerons les résultats détaillés pour chaque examen sommatif et aussi pour la note finale. Un court texte d'introduction décrira l'examen ainsi que les résultats observés. Ce texte sera suivi d'un histogramme et d'un tableau.

L'histogramme donnera une idée visuelle de la distribution des résultats pour ceux qui ont eu une note de 60% et plus à cet examen sommatif. Dans tous les cas, la longueur de la barre verticale est proportionelle au nombre de participants qui ont eu cette note.

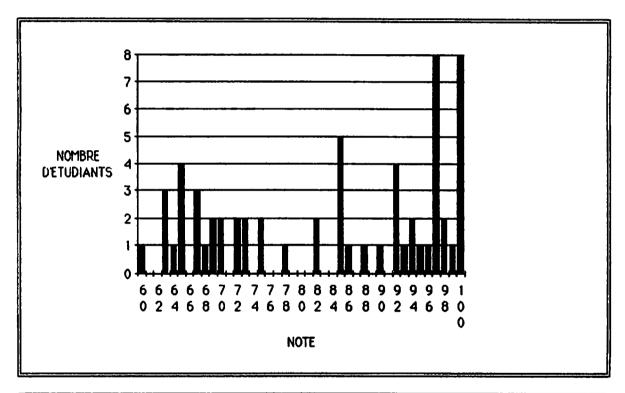
Le tableau contient des informations statistiques sur 2 groupes de personnes pour chaque examen: le groupe 'des 45 sujets' et le groupe de ceux qui ont fait l'examen. Le groupe 'des 45 sujets' constitue un sous-groupe de la population globale et est composé de sujets qui ont fait tous les examens sommatifs et aussi le pré-test et le post-test (batterie de tests d'aptitudes pour programmeurs). Le groupe de ceux qui ont fait l'examen en question varie selon l'examen. Ce sera initialement 69, puis 68, ensuite 66, 62, 55 et finalement 54 participants. Pour l'un et l'autre de ces groupes, nous indiquons la moyenne et l'écart-type de l'examen. Sous la colonne t, nous retrouvons la valeur du t de Student afin de comparer les résultats des deux groupes. Une valeur de t inférieure à 1,68 est non-significative au niveau 0,05 pour 40 candidats. Nous donnons ensuite une distribution groupée des résultats: sous la colonne Échec on retrouve le nombre de personnes qui ont eu une note de 0 à 59% inclusivement pour cet examen; la colonne Réussite inclut les résultats de 60% à 79% inclusivement, et la colonne Maîtrise contient ceux qui ont obtenu 80% ou plus. Pour chaque catégorie, on trouvera la fréquence F et le pourcentage du total de ce groupe.

2.1.1. Examen sommatif 1


Cet examen était objectif. On note qu'une très forte proportion des sujets a atteint le seuil de maîtrise. Il n'y a pas encore d'abandons. Autre constat intéressant: aucun échec. Cet examen contribuait à 10% de la note finale. Le t de Student démontre que le sous-groupe des 45 sujets est représentatif de la population totale des 69 participants.

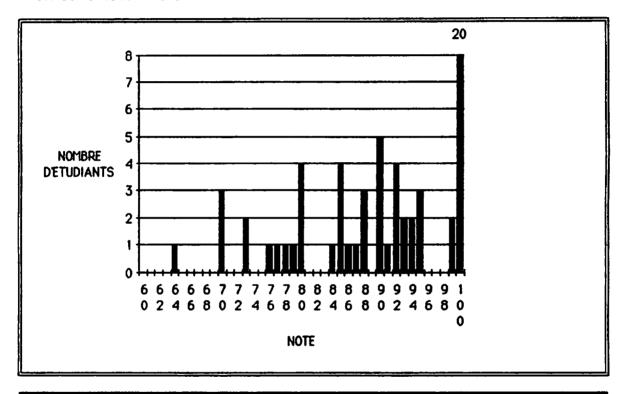
	EXAMEN SOMMATIF 1												
	Échec Passage Maîtrise												
Groupe	Moy.	σ	t	F	%	F	%	F	%				
45	94,8	6,4	1,572	0	0,0	3	6,7	42	93,3				
69	93,3	7,8		0	0,0	6	8,7	63	91,3				

2.1.2. Examen sommatif 2


Cet examen contenait une partie objective et des questions à développement. Il n'y a que 5 échecs sur 69 sujets et la très grande majorité atteint le seuil de maîtrise. Le test t de Student indique que le groupe des 45 sujets n'est pas représentatif de la population totale à cet examen; ils sont plus forts et ont des scores plus regroupés que l'ensemble des sujets. Cet examen contribuait à 13,3 % de la note finale.

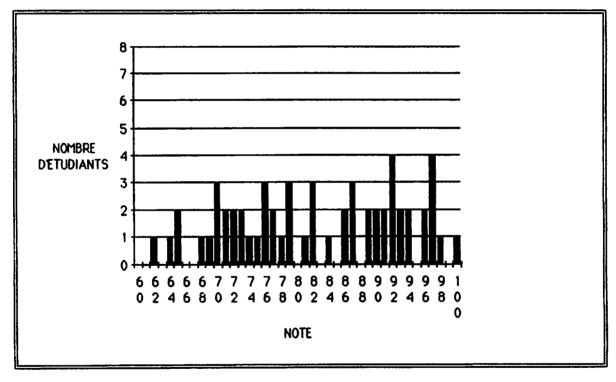
	EXAMEN SOMMATIF 2												
	Échec Passage Maîtrise												
Groupe	Moy.	σ	t	F	%	F	%	F	%				
45	88,4	10,0	2,616	1	2,2	5	11,1	39	86,7				
69	84,5	14,7		5	7,2	10	14,5	54	78,3				

2.1.3. Examen sommatif 3


Les résultats de cet examen montrent encore un taux de réussite très élevé; en effet, seulement 7,4% des participants échouent. Il y a un abandon. On constate aussi que la distribution des résultats est différente de celle des sommatifs précédents. Un plus grand nombre de personnes se retrouvent avec une note entre 60% et 79% inclusivement (note de passage). L'histogramme montre clairement la distribution bimodale des résultats avec des regroupements aux alentours des valeurs 65% et 99% respectivement. Cet examen contribuait à 20% de la note finale.

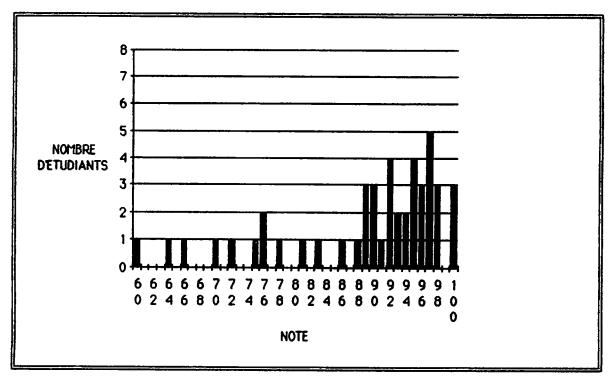
	EXAMEN SOMMATIF 3												
	Échec Passage Maîtrise												
Groupe	Moy.	σ	t	F	%	F	%	F	%				
45	84,7	14,3	1,267	1	2,2	16	35,6	28	62,2				
68	82,0	15,0		5	7,4	24	35,3	39	57,4				

2.1.4. Examen sommatif 4


Deux autres personnes ont abandonné, ce qui laisse 66 participants à cet examen. Les résultats obtenus ressemblent à ceux de l'examen sommatif 2: très faible taux d'échecs (6%) et un taux de maîtrise aux alentours de 80%. Fait inusité: 20 personnes ont eu une note de 100%. Cet examen contribuait à 10% de la note finale.

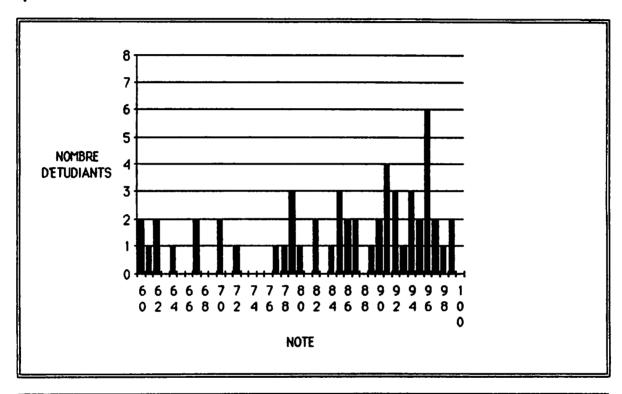
	EXAMEN SOMMATIF 4												
Échec Passage Maîtrise													
Groupe	Moy.	σ	t	F	%	F	%	F	%				
45	90,3	12,3	1,636	2	4,4	5	11,1	38	84,4				
66	87,3	14,3		4	6,1	10	15,2	52	78,8				

2.1.5. Examen sommatif 5


Les résultats à cet examen indiquent encore un très faible taux d'échecs (6,5%) et une moyenne générale tout près de 80%. Il y a 4 nouveaux abandons ce qui laisse un groupe de 62 personnes. On constate le même phénomène qu'à l'examen sommatif 3: un plus grand nombre de personnes obtiennent une note de passage comparativement à ceux qui atteignent le seuil de maîtrise. L'histogramme montre aussi une plus grande homogénéité des résultats. Cet examen contribuait à 13,3% de la note finale.

EXAMEN SOMMATIF 5											
Échec Passage Maîtrise											
Groupe	Moy.	σ	t	F	%	F	%	F	%		
45	81,5	13,0	1,135	1	2,2	19	42,2	25	55,6		
62	79,3	16,6		4	6,5	26	41,9	32	51,6		

2.1.6. Examen sommatif 6


À l'examen sommatif 6, on observe le plus haut taux d'échecs à date: 16,4%. Par contre, deux tiers des candidats obtiennent une note de 80% et plus (seuil de maîtrise) et la moyenne générale à cet examen dépasse légèrement 80%. L'histogramme montre une concentration de notes égales à 88% et plus. Neuf autres personnes (en majorité des adultes) n'ont pas fait cet examen. L'examen sommatif 6 contribuait à 33,3% de la note finale.

EXAMEN SOMMATIF 6											
Échec Passage Maîtrise											
Groupe	Moy.	σ	t	F	%	F	%	F	1 %		
45	83,7	18,5	0,979	5	11,1	7	15,6	33	73,3		
55	81,0	20,8		9	16.4	9	16,4	37	67.3		

2.1.7. Note finale

La note finale est une synthèse des résultats des examens sommatifs 1 à 6 inclusivement. Des 54 candidats qui ont participé à tous les examens, il n'y a aucun échec et 70,4% atteignent le seuil de maîtrise. L'histogramme indique clairement que la distribution des résultats pour la note finale ne suit pas une courbe normale.

NOTE FINALE											
Échec Passage Maîtrise											
Groupe	Moy.	σ	t	F	%	F	%	F	%		
45	86,0	10,8	0,808	0	0,0	10	22,2	35	77,8		
54	84,7	11,6		0	0,0	16	29,6	38	70,4		

2.2. Cohérence interne des évaluations sommatives:

Il s'agit maintenant de démontrer que les évaluations sommatives ont été raisonnablement cohérentes entre elles. Pour ce faire, nous avons fait un test de corrélation de Pearson. Ce test indique la probabilité que la corrélation entre deux ensembles de résultats soit due au hasard. Encore une fois, nous retenons un seuil significatif de 0,05.

Dans chaque cellule, on retrouvera 3 valeurs. Celle du haut représente le nombre de sujets qui sont comparés; ce nombre sera toujours le moindre des deux groupes qui sont comparés. La valeur du milieu est le coefficient de corrélation de Pearson. Règle générale, plus sa valeur est élevée, plus la corrélation est forte. La valeur du bas de chaque cellule est la probabilité que la valeur du milieu soit due au hasard.

	C	ORRÉLAT	ION ENTR	RE LES SC	MMATIF:	51	
	S 1	S2	S3	54	S5	S6	NoteFin
S1	F = 69	F = 69	F = 68	F = 66	F = 62	F = 55	F = 54
	1,000	0,3962	0,3794	0,1666	0,2449	0,1815	0,3536
	××××	0,000	0,001	0,091	0,028	0,092	0,004
52		F = 69	F = 68	F = 66	F = 62	F = 55	F = 54
		1,0000	0,5214	0,4464	0,5052	0,3554	0,6255
<u></u>		××××	0,000	0,000	0,000	0,004	0,000
S3			F = 68	F = 66	F = 62	F = 55	F = 54
	:		1,000	0,4565	0,4551	0,4575	0,7210
			××××	0,000	0,000	0,000	0,000
S4				F = 66	F = 62	F = 55	F = 54
				1,0000	0,6281	0,5483	0,6963
				××××	0,000	0,000	0,000
S5					F = 62	F = 55	F = 54
					1,0000	0,5052	0,7150
					××××	0,000	0,000
S6					!	F = 55	F = 54
						1,0000	0,8928
						××××	0,000
NoteFin						F = 54	
							1,0000
							××××

Nous voyons tout de suite que toutes les probabilités se situent en dessous du seuil de 0,05 **EXCEPTE** pour la corrélation entre l'examen sommatif 1 et l'examen sommatif 4 de même qu'entre le sommatif 1 et le sommatif 6. Ceci rejoint l'impression des enseignants pour l'examen sommatif 1: tous l'ont trouvé trop facile. Donc, le fait qu'il y ait discordance entre S1 et S4 d'une part et S1 et S6 de l'autre ne devrait pas s'expliquer en présumant que S4 et S6 étaient anormalement difficiles. S1 cec1 était vrai, on pourrait voir d'autres anomalies entre S4 et S6 et les sommatifs différents de S1, mais ceci n'est vraisemblablement pas le cas.

Il est particulièrement important de constater que la cohérence de tous les examens sommatifs en fonction de la note finale est bonne. Ceci confirme que les examens sommatifs étaient des instruments de mesure valables.

¹ Yoir annexe A

2.3. Amélioration du raisonnement logique

La deuxième hypothèse de la recherche était la suivante:

"L'application du modèle de la pédagogle de la maîtrise permettra de développer chez les étudiantes et les étudiants de façon significative des aptitudes au «sens logique»."

Comme nous l'avons déjà mentionné, la mesure du raisonnement logique a été faite avec la Batterie de tests pour programmeurs de Palormo.

Dans chacun des tableaux suivants, nous avons comparé les résultats des 45 sujets qui ont fait le pré- et le post-test du raisonnement logique. Au début du chapitre, nous avons démontré que ces 45 sujets étaient tout à fait représentatifs du groupe plus large des 69 sujets.

Nous avons cru bon, afin d'éclairer le lecteur, de formuler une question avant la présentation de chaque tableau. Notre première question se rapporte à l'effet que ce cours aurait eu sur le raisonnement logique des participants...

Question: Y a-t-il eu amélioration du raisonnement logique de façon générale? Et si oui, quelle amélioration a-t-on observé pour chacun des sous-tests?

Am	Amélioration générale du raisonnement logique											
	Pré-te	st (62)	Post-te	est (48)								
Instrument	Moy.	σ	Moy.	σ	t	P (0,05)	Signif.					
Comp. verb.	32,7	23,4	42,0	24,6	-3,85	< 0,001	oui					
Raisonn.	44,3	19,7	56,2	17,1	-4,81	< 0,001	oui					
Série lett.	56,1	27,0	72,7	23,4	-4,84	< 0,001	oui					
Apt. numér.	34,9	22,6	41,0	19,3	-2,47	0,018	oui					
diagrammes	62,2	16,6	75,0	14,7	-8,43	< 0,001	oui					
TOTAL	48,7	17,1	61,7	16,0	-9,85	< 0,001	oui					

Réponse: Il y a eu un changement significatif dans le raisonnement logique en général de même que dans chacun des 5 aspects du raisonnement logique.

2.3.1. Caractéristique SEXE

Question: Y a-t-il eu des différences significatives entre les résultats des femmes et des hommes?

	PRÉ-TEST¹											
Hommes (29) Femmes (16)												
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.					
Comp. verb.	32,8	23,4	32,4	25,0	0,06	0,953	non					
Raisonn.	44,3	22,7	44,2	14,2	0,03	0,977	non					
Série lett.	51,8	27,9	64,0	25,1	-1,50	0,143	non					
Apt. numér.	39,8	23,8	26,0	18,8	2,13	0,040	oui					
Diagrammes	63,2	14,3	60,5	21,0	0,46	0,649	non					
TOTAL	49,5	15,2	47,1	21,2	0,39	0,697	non					

	POST-TEST										
Hommes (29) Femmes (16)											
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	45,0	25,5	36,8	23,4	1,09	0,283	non				
Raisonn.	57,5	18,8	53,9	14,5	0,71	0,485	non				
Série lett.	72,2	25,0	73,7	21,6	-0,21	0,833	non				
Apt. numér.	43,5	20,5	36,5	17,5	1,21	0,236	non				
Diagrammes	75,6	15,8	74,0	13,5	0,36	0,719	non				
TOTAL	63,0	16,2	59,2	16,3	0,76	0,453	non				

Réponse: Il y avait une différence significative entre les hommes et les femmes au niveau du sous-test d'aptitude numérique au pré-test. Cette différence est disparue au post-test. Pour tous les autres sous-tests ainsi que pour le résultat total, on ne constate aucune différence significative entre les hommes et les femmes au prétest et au post-test.

¹ Voir annexe B, pages B1 et B2

2.3.2. Caractéristique GROUPE D'APPARTENANCE

Question: Y a-t-il eu des différences significatives entre les résultats des groupes réguliers versus les résultats des groupes adultes?

	PRÉ-TEST ¹										
	Régu	ılier	Adultes								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	32,7	24,7	32,7	22,4	0,00	0,996	non				
Raisonn.	46,0	17,7	41,3	23,9	-0,69	0,495	non				
Série lett.	56,7	27,5	55,1	27,7	-0,19	0,848	non				
Apt. numér.	32,5	21,4	39,2	25,5	0,89	0,380	non				
Diagrammes	62,1	15,5	62,4	19,4	0,05	0,958	non				
TOTAL	48,2	16,3	49,4	19,7	0,21	0,883	non				

	POST-TEST											
	Régu	ılier	Adultes									
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.					
Comp. verb.	38,6	24,6	48,4	24,8	1,28	0,211	non					
Raisonn.	54,9	17,6	58,6	16,9	0,68	0,502	non					
Série lett.	74,7	22,6	69,2	25,8	-0,71	0,483	non					
Apt. numér.	41,1	19,2	40,8	20,8	-0,06	0,951	non					
Diagrammes	76,1	15,8	73,2	13,4	-0,65	0,522	non					
TOTAL	61,3	15,6	62,4	17,6	0,21	0,836	non					

Réponse: Il n'y a aucune différence significative entre les résultats des sujets du secteur régulier et ceux du secteur adulte. La moyenne générale (ligne TOTAL) indique que le niveau d'amélioration des deux groupes est presque identique.

¹ Voir annexe B, pages B3 et B4

2.3.3. Caractéristique AGE

Question: Y a-t-il eu une différence significative entre les sujets de 20 ans et moins et ceux de 21 ans et plus?

	PRÉ-TEST¹										
Age <= 20 (26) Age >= 21 (19)											
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb. Raisonn. Série lett. Apt. numér. Diagrammes	31,7 43,9 59,5 28,0 61,3	25,1 15,9 26,5 18,4 16,1	34,1 44,8 51,5 44,2 63,5	22,2 25,0 28,4 25,6 18,0	-0,34 -0,15 0,97 -2,35 -0,41	0,737 0,884 0,339 0,025 0,685	non* non non oui non				
TOTAL	47,1	17,4	50,8	17,5	-0,70	0,485	non				

	POST-TEST										
	Age <=	20 (26)	Age >=	21 (19)							
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	36,6	24,8	49,5	23,6	-1,78	0,082	non				
Raisonn.	54,3	15,7	58,9	19,4	-0,86	0,398	non				
Série lett.	71,2	25,9	74,8	20,7	-0,53	0,598	non				
Apt. numér.	39,6	20,0	42,9	19,2	-0,57	0,571	non				
Diagrammes	74,8	15,9	75,4	13,8	-0,13	0,900	non				
TOTAL	59,6	17,0	64,5	14,8	-1,04	0,304	non				

Réponse: On observe que les sujets qui ont 21 ans et plus sont significativement plus forts en aptitude numérique lors du pré-test mais que ceci se résorbe au post-test. On voit aussi que les sujets de 21 ans et plus ont tendance à être plus forts en compréhension verbale lors du post-test. A part ces deux cas précis, il n'y a aucune différence significative entre les sujets de 20 ans et moins et ceux de 21 ans et plus.

¹ Voir annexe B, pages B5 et B6

^{*} Non significatif mais on note une tendance.

2.3.4. Caractéristique EXPÉRIENCE DU COLLÉGIAL

Question: Le fait qu'un sujet ait déjà suivi un ou plusieurs cours au niveau collégial a-t-il eu une influence significative sur la progression du raisonnement logique?

	PRÉ-TEST ¹										
Aucune (17) 1 ou plus (28)											
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb. Raisonn. Serie lett. Apt. numér. Diagrammes	32,4 37,9 52,5 31,5 57,6	20,8 13,0 29,3 17,2 15,0	32,9 48,1 58,3 36,9 65,1	25,6 22,5 26,3 25,9 17,5	-0,07 -1,92 -0,67 -0,84 -1,53	0,943 0,061 0,509 0,408 0,135	non non* non non				
TOTAL	44,4	15,6	51,2	18,1	-1,34	0,190	non				

	POST-TEST										
	Aucune (17) 1 ou plus (28)										
Instrument	Moy.	σ	Moy.	σ	t	P	Signif.				
Comp. verb.	35,8	21,4	45,9	26,4	-1,40	0,169	non				
Raisonn.	50,4	15,1	59,8	17,8	-1,88	0,068	non*				
Série lett.	75,8	21,1	70,8	25,2	0,72	0,478	non				
Apt. numér.	41,9	20,0	40,5	19,6	0,23	0,818	non				
Diagrammes	71,8	13,7	77,0	15,5	-1,19	0,241	non				
TOTAL	59,0	14,3	63,3	17,2	-0,90	0,373	non				

Réponse: Ceux et celles qui ont déjà fait une session ou plus au cégep ont tendance à être plus forts en raisonnement que les autres. Cette tendance se retrouve au pré-test et au post-test. Aucune autre différence significative n'apparaît entre les deux groupes.

¹ Voir annexe B, pages B7 et B8

Non significatif mais on note une tendance.

2.3.5. Caractéristique TRAVAIL RÉMUNÉRÉ

Question: Est-ce qu'un horaire de travail hors-cours assez chargé a eu une influence significative sur l'amélioration du raisonnement lo-gique? Nous établissons arbitrairement ce niveau à 11 heures et plus par semaine.

	PRÉ-TEST¹										
10 et - (28) 11 et + (17)											
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb. Raisonn. Série lett. Apt. numér.	30,8 39,8 54,9 32,7	25,4 17,8 29,0 19,6	35,8 51,7 58,2 38,4	21,0 21,6 24,9 27,7	-0,71 -1,91 -0,41 -0,74	0,480 0,066 0,681 0,465	non non* non non				
Diagrammes TOTAL	59,8 45,7	16,0 17,8	66,3 53,5	17,7 15,8	-1,24 -1,54	0,225	non				

	POST-TEST										
10 et - (28)											
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	39,9	25,1	45,6	24,8	-0,74	0,462	non				
Raisonn.	55,3	15,6	57,8	20,1	-0,45	0,655	non				
Série lett.	71,8	25,2	74,3	21,4	-0,36	0,720	non				
Apt. numér.	41,9	19,4	39,5	20,3	0,40	0,691	non				
Diagrammes	72,1	13,3	79,9	16,4	-1,65	0,110	non				
TOTAL	59,5	16,7	65,2	15,1	-1,19	0,242	non				

Réponse: Nous voyons au pré-test que ceux qui travaillent 11 heures ou plus par semaine ont tendance à être plus forts en raisonnement. Cette tendance disparaît au post-test. Il n'y a pas d'autres différences significatives entre ces deux sous-groupes.

¹ Voir annexe B, pages B9 et B10

Non significatif mais on note une tendance.

2.3.6. Caractéristique STATUT DE L'ÉTUDIANT

Question: Est-ce que le fait qu'un sujet soit aux études à temps partiel ou à temps plein a eu un effet sur les résultats?

	PRÉ-TEST ¹										
	Partic	el (11)	Pleir	1 (34)							
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	28,6	27,7	34,0	22,5	-0,58	0,570	non				
Raisonn.	48,3	26,5	43,0	17,6	0,62	0,548	non				
Série lett.	59,5	29,9	55,1	26,8	0,43	0,670	non				
Apt. numér.	34,9	22,6	34,9	23,3	0,01	0,994	non				
Diagrammes	64,3	23,8	61,6	14,3	0,35	0,729	non				
TOTAL	50,1	24,1	48,2	15,0	0,25	0,808	non				

	POST-TEST										
	Partic	el (11)	Plein (34)								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	45,9	27,0	40,8	24,4	0,56	0,584	non				
Raisonn.	60,0	19,3	55,0	16,7	0,77	0,452	non				
Série lett.	68,3	30,7	74,1	21,2	-0,59	0,564	non				
Apt. numér.	41,7	22,2	40,8	19,0	0,13	0,899	non				
Diagrammes	72,8	16,4	75,8	14,6	-0,53	0,602	non				
TOTAL	61,5	20,8	61,7	14,7	-0,04	0,968	non				

Réponse: Il n'y a aucune différence significative entre les sujets à temps plein et à temps partiel au pré-test et au post-test.

¹ Voir annexe B, pages B11 et B12

2.3.7. Caractéristique COURS DANS LA SESSION

Question : Est-ce que la charge de travail du sujet, exprimée par le nombre de cours par session, a eu une influence sur les résultats?

PRÉ-TEST ¹										
	5 et pl	us (26)								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.			
Comp. verb. Raisonn. Série lett. Apt. numér. Diagrammes	33,9 51,9 60,9 36,3 67,5	27,5 24,4 27,0 25,5 20,7	32,5 39,3 52,7 35,6 58,7	21,9 16,2 27,2 22,3 13,5	0,17 1,83 0,96 0,09 1,51	0,864 0,080 0,343 0,931 0,144	non non* non non non			
TOTAL	53,6	21,0	45,9	14,8	1,28	0,213	non			

POST-TEST										
	4 et mo	ins (16)	5 et pl	us (26)						
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.			
Comp. verb. Raisonn. Série lett.	48,4 61,7 72,9	26,1 17,3 26,9	37,1 55,0 71,8	23,6 14,9 22,9	1,41 1,29 0,14	0,169 0,208 0,893	non non non			
Apt. numér. Diagrammes	41,0 76.6	21,0 15,3	41,0 74,1	20,1 14,5	0,0 0,53	1,000 0,597	non non			
TOTAL	64,4	17,8	59,8	15,3	0,85	0,405	non			

Réponse: Aucune différence significative n'est à noter à part une tendance au pré-test: ceux qui ont 4 cours ou moins sont meilleurs en raisonnement que les autres. Cette différence disparaît cependant au post-test.

¹ Voir annexe B, pages B13 et B14

^{*} Non significatif mais on note une tendance.

2.3.8. Caractéristique PRÉALABLE INFORMATIQUE

Question: Est-ce que le fait qu'un sujet ait déjà suivi un ou plusieurs cours d'informatique a eu une influence sur les résultats?

	PRÉ-TEST ¹										
	Aucu	n (14)	1 ou pl	us (31)							
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	37,6	24,8	30,4	23,2	0,92	0,365	non				
Raisonn.	41,8	16,5	45,4	21,5	-0,62	0,540	non				
Série lett.	45,5	27,0	60,9	26,4	-1,79	0,086	non*				
Apt. numér.	37,7	26,9	33,6	21,2	0,51	0,617	non				
Diagrammes	56,9	18,8	64,7	15,5	-1,36	0,187	non				
TOTAL	46,1	16,7	49,8	17,8	-0,66	0,514	non				

POST-TEST										
	Aucu	n (14)	1 ou pl	us (31)						
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.			
Comp. verb.	49,0	25,3	38,9	24,4	1,25	0,223	non			
Raisonn.	51,6	16,2	58,3	17,6	-1,26	0,218	non			
Série lett.	74,7	16,0	71,8	26,6	0,45	0,652	non			
Apt. numér.	37,6	15,9	42,5	21,1	-0,86	0,397	non			
Diagrammes	70,3	15,1	77,2	14,5	-1,44	0,164	non			
TOTAL	59,0	14,4	62,9	17,0	-0,79	0,436	non			

Réponse: La seule différence apparente entre les deux groupes au pré-test est que ceux qui ont déjà pris un ou plusieurs cours d'informatique ont tendance à être plus forts dans le test des séries de lettres. Cette différence disparaît au post-test.

¹ Voir annexe B, pages B15 et B16

^{*} Non significatif mais on note une tendance.

2.3.9. Caractéristique MANIPULATION D'UN MICRO

Question: Est-ce qu'une expérience préalable de manipulation d'un microordinateur a eu une influence sur les résultats?

PRÉ-TEST ¹										
	Oui (40) Non (5)									
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.			
Comp. verb.	31,8	24,6	39,4	13,8	-1,04	0,330	non			
Raisonn.	45,9	20,3	31,8	12,8	2,14	0,069	non*			
Série lett.	58,9	27,3	34,2	15,7	2,99	0,020	oui			
Apt. numér.	32,3	21,9	55,4	22,5	-2,17	0,082	non*			
Diagrammes	63,9	16,5	48,8	13,8	2,26	0,064	non×			
TOTAL	49,4	18,0	42,6	10,4	1,25	0,253	non			

POST-TEST										
	Oui	ıi (40) Non (5)								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.			
Comp. verb.	40,1	24,8	57,6	20,8	-1,73	0,134	non			
Raisonn.	57,3	17,2	48,0	17,2	1,13	0,308	non			
Série lett.	72,7	24,5	72,8	16,8	-0,01	0,991	non			
Apt. numér.	40,6	20,3	44,4	12,2	-0,61	0,564	non			
Diagrammes	76,5	14,8	63,2	9,7	2,70	0,031	oui			
TOTAL	62,0	16,7	59,4	11,3	0,45	0,672	non			

Réponse: Les différences observées vis-à-vis cette caractéristique sont suspectes à cause du très faible nombre de ceux qui n'ont jamais manipulé un ordinateur préalablement. Nous pouvons quand même constater que le fait de n'avoir jamais manipulé un ordinateur avant de faire un cours d'informatique semble être un handicap dans quelques-uns des tests logiques.

¹ Voir annexe B, pages B17 et B18

Non significatif mais on note une tendance.

2.3.10. Caractéristique EXPÉRIENCE DE PROGRAMMATION

Question: Est-ce que le fait qu'un sujet ait déjà programmé un ordinateur a eu un effet sur les résultats?

	PRÉ-TEST ¹										
	Out	(31)	1) Non (14)								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.				
Comp. verb.	27,9	23,4	43,3	21,2	-2,18	0,038	oui				
Raisonn.	46,6	20,9	39,2	17,2	1,24	0,225	non				
Série lett.	59,9	27,9	47,9	24,8	1,45	0,159	non				
Apt. numér.	34,1	21,7	36,5	26,2	-0,30	0,770	non				
Diagrammes	65,0	15,4	56,1	18,7	1,55	0,136	non				
TOTAL	49,4	17,9	47,0	16,6	0,44	0,666	non				

	POST-TEST											
	Oui	(31)	Non	(14)								
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.					
Comp. verb.	37,3	24,6	52,5	23,0	-2,01	0,055	non*					
Raisonn.	58,6	17,7	51,0	15,7	1,44	0,161	non					
Série lett.	72,4	26,4	73,5	16,5	-0,18	0,861	non					
Apt. numér.	42,7	21,2	37,3	15,2	0,97	0,340	non					
Diagrammes	77,9	14,3	68,8	14,7	1,94	0,064	non*					
TOTAL	62,8	16,9	59,2	14,5	0,72	0,475	non					

Réponse: Nous notons une différence significative en compréhension verbale au pré-test en faveur de ceux qui ont déjà programmé. Cette différence significative au pré-test diminue et n'est plus qu'une tendance au post-test; au post-test, on voit apparaître une tendance: ceux qui ont déjà programmé ont tendance à être plus forts dans le test des diagrammes. Par contre, les deux groupes ne sont pas significativement différents au score total, ni au pré-test ni au post-test.

¹ Voir annexe B, pages B19 et B20

^{*} Non significatif mais on note une tendance.

2.3.11. Caractéristique POSSESSION D'UN MICRO-ORDINATEUR

Question: Est-ce que le fait de posséder un micro-ordinateur a eu une influence sur les résultats?

			PRÉ-TE	ST ¹			
	Oui	(22)	Non	(23)			
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.
Comp. verb.	33,3	26,8	32,1	20,9	0,17	0,870	non
Raisonn.	53,2	19,8	35,7	16,3	3,23	0,002	oui
Série lett.	62,7	27,7	49,8	25,9	1,61	0,114	non
Apt. numér.	36,7	23,9	33,1	22,3	0,53	0,600	non
Diagrammes	68,1	12,8	56,7	18,4	2,42	0,020	oui
TOTAL	54,1	16,1	43,4	17,2	2,17	0,036	oui

			POST-T	EST			
	Oui	(22)	Non	(23)			
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.
Comp. verb.	46,0	25,8	38,3	23,9	1,03	0,308	non
Raisonn.	63,9	16,0	48,9	15,4	3,19	0,003	oui
Série lett.	77,8	22,3	67,8	24,3	1,44	0,158	non
Apt. numér.	44,9	20,3	37,3	18,5	1,32	0,194	non
Diagrammes	80,9	13,9	69,4	13,9	2,77	0,008	oui
TOTAL	67,5	16,0	56,1	14,5	2,51	0,016	oui

Réponse: Cette caractéristique, plus que toute autre, démontre des différences significatives évidentes entre deux sous-groupes. Ceux qui possèdent un micro-ordinateur sont significativement **beau-coup** plus forts au pré-test et au post-test. De plus, leur force significative en diagrammes devient très significative au post-test. Il est à noter que les résultats du score total au pré-test et au post-test sont significativement meilleurs pour ceux qui possèdent un micro-ordinateur.

¹ Voir annexe B, pages B21 et B22

2.3.12. Le problème de ceux qui possèdent un micro-ordinateur

Comme nous venons de le voir à la section 2.3.11, le groupe de sujets qui possèdent un micro-ordinateur était significativement plus fort aux tests du raisonnement logique que les autres sujets.

Rappelons que les onze caractéristiques retenues étaient présumées indépendantes les unes des autres. Par exemple: il n'y avait aucune raison de présumer que ceux qui avaient déjà fait une session ou plus au niveau collégial étaient de sexe féminin.

Mais dans le cas actuel, il est important d'analyser attentivement le profil de ceux qui possèdent un micro-ordinateur. Est-ce que ce sont surtout des sujets qui ont un travail rémunéré de 11 heures et plus par semaine? Ou encore des filles qui ont fait une session et plus au cégep?

Le test statistique du chi-carré permet d'établir s'il y a une relation significative entre 2 variables présumées indépendantes au départ. Nous avons fait le test du chi-carré pour la caractéristique "possède un micro-ordinateur" versus les 10 autres caractéristiques. Voici ce que nous avons découvert :

Versus	Possède un	micro-ordina	teur ¹
	Ch1 ²	Р	Significatif?
Groupe d'appartenance	4,87	0,181	Non
Sexe	4,28	0,039	Oui
Age	0,23	0,634	Non
Expérience du collégial	2,99	0,084	Non, tendance
Travail rémunéré	1,81	0,178	Non
Statut étudiant	< 0,01	1,000	Non
Cours dans la session	0,31	0,575	Non
Préalables informatiques	0,75	0,387	Non
Manipulation d'un micro	3,40	0,065	Non, tendance
Expérience de programmation	2,28	0,131	Non

Donc il y a une relation significative entre le sous-groupe des 22 sujets qui possèdent un micro-ordinateur et le sous-groupe des 29 sujets masculins. Effectivement, 18 des 22 sujets possédant un micro-ordinateur sont de sexe masculin.

¹ Voir annexe C

La question se pose donc de savoir si les 18 sujets masculins qui possèdent un micro-ordinateur n'auraient pas indûment influencé les résultats en masquant ou en compensant pour les résultats des autres?

Pour en avoir le coeur net, nous faisons une dernière analyse statistique. Nous allons exclure les 18 sujets masculins possédant un micro-ordinateur et analyser seulement les résultats au pré-test et au post-test des 27 autres sujets. Si ces 27 sujets démontrent une amélioration significative du raisonnement logique, nous serons en mesure d'affirmer que le **Mastery Learning** a eu une influence directe et significative sur l'amélioration du raisonnement logique. Pour fins de comparaison, nous allons aussi regarder l'évolution des 18 "sujets forts".

Voici les résultats de cette analyse :

Suje	ets mas	culins p	ossédan	t un mic	ro-ordi	nateur ¹	
	Pré-te	st (18)	Post-t	est (18)			
Instrument	Moy.	σ	Moy.	σ	t	P(0,05)	Signif.
Comp. verb.	33,3	26,7	44,4	26,4	-2,78	0,013	Oui
Raisonn.	54,0	21,1	66,4	13,6	-4,03	0,001	Oui
Série lett.	59,3	28,9	77,3	23,9	-3,18	0,005	Oui
Apt. numér.	41,2	23,3	47,4	20,4	-1,41	0,176	Non
Diagrammes	67,6	13,1	80,7	14,8	-4,85	< 0,001	Oui
TOTAL	53,9	16,6	67,5	16,5	-7,25	< 0,001	Oui

L	es autro	es sujet	s, exclu	iant les	18 ci-h	aut ²	
	Pré-te	st (27)	Post-to	est (27)			
Instrument	Moy.	σ	Moy.	σ	t	Р	Signif.
Comp. verb.	32,3	22,0	40,5	24,2	-2,65	0,013	Oui
Raisonn.	37,8	16,6	49,4	16,3	-3,20	0,004	Oui
Série lett.	54,0	26,5	69,7	23,4	-3,59	0,001	Oui
Apt. numér.	30,7	22,0	36,7	18,1	-2,04	0,052	Non*
Diagrammes	58,7	18,2	71,3	14,0	-6,93	< 0,001	Oui
TOTAL	45,1	17,2	57,8	15,0	-6,87	< 0,001	Oui

Les résultats démontrent que ceux qui ne faisaient pas partie du groupe des 18 sujets masculins possédant un micro-ordinateur ont vécu une améliora-

¹ Voir annexe D.

² Voir annexe E.

^{*} Non significatif mais on note une tendance.

tion significative du raisonnement logique. On remarque aussi que chacun des sous-tests montre une amélioration significative pour chaque sous-groupe excepté pour le test d'aptitude numérique.

La plus étonnante constatation vient du fait que les "faibles" se sont améliores à peu près autant que les "forts". Si nous regardons seulement les écarts entre les moyennes au pré-test et au post-test pour chacun des sous-groupes, voici ce que nous voyons :

Amélioration	n du raisonnem	ent logique
Instrument	Les 18 "forts"	Les 27 "faibles"
Comp. verb.	+11,1	+8,2
Raisonn.	+12,4	+11,6
Série lett.	+18,0	+15,6
Apt. numér.	+6,3	+6,0
Diagrammes	+13,2	+12,6
TOTAL	+13,6	+12,7

Bref, le **Mastery Learning** aura amélioré le raisonnement des "faibles" autant que celui des "forts" puisqu'il y a eu une amélioration à peu près égale dans chacun des sous-tests de même qu'au total.

2.4. Résumé

En guise de résumé, voici un tableau synthèse qui démontre clairement l'amélioration du raisonnement logique des sujets avec l'approche **Mastery Learning**.

La première colonne (X_1) est le score moyen du pré-test pour chaque sous-groupe selon les 11 caractéristiques retenues. La deuxième colonne donne l'écart-type (σ_1) de ce pré-test.

La troisième colonne (X_2) est le score moyen du post-test pour chaque sous-groupe selon les 11 caractéristiques retenues. La quatrième colonne donne l'écart-type (σ_2) de ce post-test.

La cinquième colonne (Δ) est le résultat d'un calcul mathématique qui utilise les valeurs des trois premières colonnes. Delta est une valeur qui indique le degré d'amélioration en terme de proportion de l'écart-type observé au premier test. Une amélioration d'un écart-type est considérée comme étant très significative.

CARACTÉRISTIQUE	X 1	σ 1	X ₂	σ 2	Δ*
Sexe					
Masculin	49,5	15,2	63,0	16,2	0,89
Féminin	47,1	21,2	59,2	16,3	0,57
Groupe d'appartenance					
Régulier	48,2	16,3	61,3	15,6	0,80
Adulte	49,4	19,7	62,4	17,6	0,66
Age					
· <= 20 ans	47,1	17,4	59,6	17,0	0,72
>= 21 ans	50,8	17,5	64,5	14,8	0,78
Expérience du collégiai					
aucun	44,4	15,6	59,0	14,3	0,94
1 ou plus	51,2	18,1	63,3	17,2	0,67
Travail rémunéré					
<= 10 heures	45,7	17,8	59,5	16,7	0,78
>= 11 heures	53,5	15,8	65,2	15,1	0,74
Statut de l'étudiant					
temps partiel	50,1	24,1	61,5	20,8	0,47
temps plein	48,2	15,0	61,7	14,7	0,90
Cours dans la session					
<= 4	53,6	21,0	64,4	17,8	0,51
>= 5	45,9	14,8	59,8	15,3	0,94
Préalables informatiques					
Oui	46,1	16,7	59,0	14,4	0,77
Non	49,8	17,8	62,9	17,0	0,74
Déjà manipulé un micro?					
Oui	49,4	18,0	62,0	16,7	0,70
Non	42,6	10,4	59,4	11,3	1,62
À déjà programmé ?			i		
Oui	49,4	17,9	62,8	16,9	0,75
Non	47,0	16,6	59,2	14,5	0,73
Possède un micro ?					
Oui	54,1	16,1	67,5	16,0	0,83
Non	43,4	17,2	56,1	14,5	0,74
TOTAL	48,6	17,1	61,7	16,0	0,77

$$\star \Delta = \frac{X_2 - X_1}{\sigma_1}$$

2.5. Analyse du Perpe

Les sujets, lors de l'avant-dernière rencontre, ont complété le Test Perpel. On sait que ce questionnaire permet de connaître les perceptions, les désirs et le degré de satisfaction ou d'insatisfaction exprimés par ces élèves en regard de plusieurs aspects de l'enseignement. Les informations recueillies quoique ne s'inscrivant pas directement dans le cadre de nos hypothèses ajoutent cependant à notre recherche des informations non négligeables.

En effet, le jugement de l'étudiante et de l'étudiant sur son cours complète les données objectives que sont les notes, celles de la passation des évaluations et celles du test d'aptitudes.

Rappelons que la moyenne de la classe en ce qui a trait à la satisfaction s'exprime ainsi:

Éche	lle de	satisfaction
de 0,00 à 0.29	→	très grande satisfaction
de 0,30 à 0,49	→	grande satisfaction
de 0,50 à 0,69	→	satisfaction moyenne

Nous observons qu'un de nos groupes se situe à 0,22 (très grande satisfaction) et que les trois autres se situent respectivement à 0,32, 0,33 et 0,45 (grande satisfaction). Ajoutons pour plus de précision que l'écart-type présente une **distribution concentrée** dans trois groupes: ceux de l'enseignement régulier et celui des adultes le soir (0,18, 0,26, 0,27). La clientèle d'I.S.P.J. présente une **distribution habituelle** avec 0,39. Pour fins de rappel ajoutons que de 0,00 à 0,29 la distribution est **concentrée** et que de 0,30 à 0,49 la distribution est **habituelle**.

Quels sont les points qui ressortent davantage? Nous observons ici une constante : dans les quatre groupes, les éléments relatifs à la clarté et à la structure apparaissent comme étant à la fois les plus recherchés avec des scores respectifs de 6,31, 6,09, 6,08 et 6,08 pour la réalité et de 6,30, 6,25, 6,25 et 6,23 pour le désir. Rappelons que l'échelle de Likert utilisée se présente en sept (7) catégories. D'autre part, il est révélateur de noter

François Gagné, <u>Questionnaire PERPE supérieur</u>, version longue, les Presses de l'Université du Québec, Montréal, 1976.

une constante à l'item **charge de travail**. Avec une oscillation autour de 5 sur l'échelle, les étudiantes et les étudiants reconnaissent la sévérité des professeurs dans la correction, la fréquence des contrôles et la charge totale de travail exigée comme **plutôt grande** et non **extrêmement grande**. Ce qui est significatif dans le cas d'une approche pédagogique qui utilise de façon constante les ressources de l'évaluation et de l'enseignement correctif.

С	larté et structure
	Scores des groupes
La réalité	6,31 6,09 6,08 6,08
Le désir	6,30 6,25 6,25 6,23

Au chapitre du nombre d'heures d'étude par semaine, relevons les chiffres suivants: 2 sujets au total disent avoir étudié 20 heures et plus, 11 disent avoir étudié de 15 à 19 heures, 15 disent avoir étudié de 10 à 14 heures, 12 admettent avoir étudié de 5 à 9 heures et enfin 5 disent avoir étudié moins de 5 heures par semaine. Le total des répondants à cette question est de 45.

Chapitre 4

Portée et implications de ces résultats

Notre expérimentation visait deux objectifs: améliorer le taux de réussite de nos élèves d'une part et améliorer leurs capacités de raisonnement logique d'autre part. A cet effet, dans le cadre d'une recherche exploratoire suivant un protocole pré-expérimental, nous avons soumis nos quatre groupes d'élèves du cours logique de programmation à un modèle d'enseignement spécifique, le Mastery Learning.

Dans ce chapitre, nous retiendrons les faits saillants de notre recherche puis nous ouvrirons sur la portée et les implications de nos résultats. Nous parlerons également des effets non attendus ainsi que des questions soulevées qui pourraient bien sûr devenir d'excellents sujets de recherche.

1. Avons-nous amélioré le taux de réussite?

On se souviendra de notre première hypothèse:

"Comparativement aux étudiantes et aux étudiants des années antérieures, les étudiantes et les étudiants ayant suivi un enseignement à partir des principes de la pédagogie de la maîtrise obtiendront un résultat significativement supérieur".

Nous pouvons maintenant dire que notre hypothèse est confirmée, tous les élèves qui ont complété le cours ont bel et bien réussi. Sur les 69 sujets il y a eu 14 abandons dont 10 à l'éducation des adultes et 4 à l'enseignement régulier. Une enquête nous a permis de savoir que 5 des 10 abandons chez les adultes étaient reliés au travail (conflits d'horaire, fatigue etc.) deux pour cause de maladie et de déménagement, un parce que l'étudiant avait les "points nécessaires pour passer", les deux dernières causes demeurant inconnues. Chez les 4 sujets de l'enseignement régulier qui ont abandonné le cours, on a pu observer quatre abandons du programme au complet.

Des 54 sujets qui ont fait tous les examens sommatifs, 70% ont obtenu une note finale de 80% et plus, 30% se situant entre 60% et 79% inclusivement.

Si l'on fait une comparaison avec les années précédentes, c'est-à-dire de 1983 à 1986, le taux de réussite au cours 420-101 se situait habituellement autour de **50%** alors qu'avec le **Mastery Learning** il est de **80%** si l'on tient compte des 14 abandons. On considérera cependant ces derniers chiffres comparatifs comme "indicateurs" puisque les mêmes examens n'ont pas été donnés aux groupes antérieurs.

2. La qualité de la réussite

Compte tenu de la dernière remarque on pourrait mettre en doute la valeur de nos résultats. En effet les exigences de nos examens étaient-elles aussi sévères? Le contenu était-il aussi dense? Rappelons à ce sujet que nous avons fait une recherche exploratoire suivant un protocole pré-expérimental et que nous sommes bien conscients qu'une recherche de type expérimental avec groupe contrôle aurait une plus grande portée ce que d'ailleurs nous aimerions faire advenant la possibilité de recruter un plus grand nombre de sujets. Ceci dit nous ajouterons quelques observations factuelles qui pourraient ouvrir sur de nouvelles hypothèses:

- a) les quatre professeurs ont donné les mêmes examens sommatifs aux mêmes moments; les critères de correction étaient les mêmes. Ce sont les mêmes professeurs qui enseignaient le même cours, les années précédentes, et ils sont d'accord sur le fait que les examens étaient aussi difficiles sinon plus difficiles que les années précédentes.
- b) la quantité de contenu a été augmentée parce qu'il y avait obligation d'harmoniser les contenus utilisés antérieurement par les quatre professeurs. Ainsi on a d'abord retenu les éléments communs aux quatre cours mais on a ajouté pour tous les groupes des éléments auxquels tenaient l'un ou l'autre des enseignants. En voici quelques exemples: la technique des diagrammes Warnier-Orr; l'enseignement d'une façon standardisée de faire la trace d'un algorithme; l'utilisation des paramètres par valeur et par référence avec l'approche modulaire.

Cette expérience nous aura donc appris que nous pouvions ajouter au contenu de cours, et même augmenter nos exigences aux examens sommatifs dans un contexte d'utilisation du Mastery Learning. Nous avons pu observer que le fait de planifier de façon systématique et rationnelle un cours nous permettait d'utiliser le temps alloué de façon plus efficace que dans un cours traditionnel. De la même façon, les tests d'évaluation formative et les périodes d'enseignement correctif qui, au début enlèvent du temps à la transmission d'informations, deviennent dès la cinquième semaine facteurs de gains de temps puisque les élèves, maîtrisant mieux les préalables conceptuels et théoriques comprennent plus rapidement et commencent à acquérir des comportements d'étude réqulière. Ils sont entre autres plus actifs intellectuellement et par le fait même demandent moins souvent au professeur de répéter les mêmes explications. Plus au fait de ce qu'ils savent et ne savent pas, ils posent des questions plus pertinentes et plus précises et deviennent ainsi de plus en plus critiques et donc autonomes par rapport à leurs propres apprentissages.

3. La cote Z et le mastery learning

Les résultats du Mastery Learning ne recouvrent pas la courbe normale à laquelle on est habitué puisque nos élèves ont tous réussi et que 70% ont obtenu une note finale de 80% et plus. L'implication de ce mode de sélection universitaire est moins sévère pour les élèves du secteur professionnel qui sont sur le marché du travail après avoir obtenu leur D.E.C. Ainsi pour notre programme et notre collège, 15% seulement de nos élèves diplômés vont à l'université. Mais nous sommes conscients que pour des professeurs de sciences la question se pose. Rappelons toutefois que le Mastery Learning propose une conception de l'enseignement qui repose sur la réussite du plus grand nombre alors que la cote Z prétend sélectionner les meilleurs élèves. Nous sommes donc en présence d'un débat idéologique qui dépasse le cadre de cette recherche. Aux gens qui veulent que les élèves réussissent nous disons simplement le Mastery Learning peut être un excellent moyen.

4. Avons-nous contribué à développer les habiletés au "raisonnement logique"?

Au département de Techniques Informatiques on entend souvent dire que si les élèves échouent c'est qu'ils manquent de sens ou de raisonnement logique. Nous avons donc voulu non seulement mesurer ce sens logique mais vérifier si nous pouvions l'améliorer en donnant le cours logique de programmation dans un contexte de Mastery Learning. Rappelons que notre deuxième hypothèse était la suivante:

"L'application du modèle de la pédagogie de la maîtrise permettra de développer chez l'étudiante et l'étudiant de façon significative des aptitudes au "sens logique".

La batterie de tests de Palormo utilisée au pré-test et au post-test nous permet encore une fois de confirmer notre hypothèse. Revoyons les grandes lignes de cette partie de notre recherche.

On a vu que les 45 sujets qui avaient un dossier complet (ces sujets ont passé tous les tests sommatifs ainsi que le pré-test et le post-test) ont démontré une amélioration significative du raisonnement logique. Cette amélioration équivaut à 0,9 d'un écart-type et est par conséquent très significative. On note de plus que cette amélioration n'est pas due à des répartitions anormales pour dix des onze caractéristiques retenues: sexe, groupe d'appartenance, âge, expérience du collégial, travail rémunéré, statut

étudiant, nombre de cours dans la session, préalables informatiques, préalable "manipulation d'un micro-ordinateur", préalable "déjà programmé".

Cependant nous avons découvert que les sujets qui **possédaient un micro-ordinateur** (la onzième caractéristique) étaient significativement plus forts au sous-test **raisonnement logique** et ce au pré-test et au post-test. Il nous fallait donc vérifier si cette onzième caractéristique était véritablement indépendante des dix autres.

Nous avons découvert une corrélation entre les sujets qui possédaient un micro-ordinateur et le sexe: les 18 sujets masculins qui possédaient un micro-ordinateur étaient significativement plus forts que les autres. La question se posait, dramatiquement: est-ce que ces 18 sujets auraient pu masquer la faiblesse des 27 autres sujets? Pour clarifier ce point nous avons examiné l'amélioration du raisonnement logique pour les 18 sujets et les 27 sujets séparément, ce qui nous a permis de découvrir que les deux sous-groupes avaient amélioré leur raisonnement logique de façon presqu'identique. Il y a donc eu amélioration du raisonnement logique et ce pour tous les élèves.

5. Raisonnement logique et formation fondamentale

Au département de Techniques Informatiques c'est la première fois que le raisonnement logique et son amélioration sont mesurés. Encore là, nous ne pouvons faire de comparaison avec les groupes des années passées mais dans le contexte d'une étude exploratoire telle que la nôtre, nous avons des indicateurs extrêmement intéressants en vue de recherches futures.

Si nous constatons en particulier que le cours **logique de programmation** enseigné dans un contexte de **Mastery Learning** peut aider l'élève à développer cet important secteur de la formation fondamentale qu'est le **raisonnement logique**, de nombreuses questions surgissent: quelle est la part de l'encadrement pédagogique? Quelle est la part de la discipline dans cette formation? Le **Mastery Learning** a-t-il un impact sur d'autres facettes de la formation fondamentale? Quels sont les cours les plus aptes à développer le **raisonnement logique**?

6. Des portées et implications secondaires

En cours d'expérimentation nous avons pu observer certains faits qui, ne s'inscrivant pas comme tels dans nos objectifs de recherche, n'en apportent pas moins un intérêt que nous ne pouvons ignorer, les voici:

- a) le test PERPE, que nous avons fait passer, témoigne d'une très grande satisfaction des élèves; ils disent avoir surtout apprécié la structure du cours, le fait que les objectifs soient assez spécifiques pour qu'ils sachent de façon précise ce qu'on attendait d'eux. A notre surprise, ils n'ont pas trouvé exagérée la quantité d'évaluations sommatives et formatives imposées, bien au contraire.
- b) la MOTIVATION des élèves n'a pas été mesurée, cependant de nombreux témoignages laissent penser qu'un test portant sur les attitudes aurait été intéressant en ce sens. Nous avons aussi observé moins de compétition et plus d'entraide puisqu'ils n'étaient pas récompensés du fait que les autres échouaient. Ils ont saisi rapidement les implications de l'évaluation critériée et ont développé de l'ambition mais par rapport à leurs propres progrès. L'évaluation formative et le "feedback" immédiat ont été nommément appréciés chez les adultes qui se sont dits sécurisés en plus d'être motivés. À la question de savoir s'ils n'étaient pas trop encadrés pour des adultes, ces derniers ont répondu qu'au contraîre cette approche pédagogique les aidait à supporter la fatigue d'un cours suivi après une journée de travail. Ajoutons que dans les deux cas les enseignants sont moins vus comme des figures d'autorité menaçantes que comme des personnes disponibles et aidantes.
- c) le développement de l'AUTONOMIE de l'élève dans le cadre d'un encadrement de type Mastery Learning n'est-il pas négligé? Voilà une autre question qui nous a préoccupés à maintes reprises et qu'il serait intéressant d'approfondir dans le cadre d'une autre recherche. En effet jusqu'où doit-on aller dans le suivi à donner en première année et, en deuxième année de cégep? Comment l'élève qui a fait un cours de type Mastery Learning s'intégrera-t-il dans un cours plus traditionnel? Nous n'avons pas de réponses à donner pour le moment mais nous nous demandons si l'initiative du "pair aidant" en activité d'enrichissement ou en enseignement correctif ne pourrait pas développer une forme d'autonomie? Nous nous demandons également si l'initiative du choix d'atteindre la maîtrise après le premier test formatif n'est pas du seul ressort de l'élève? Le fait d'être mieux informé et de façon immédiate de ses forces et de ses faiblesses d'apprentissage ne

- permettrait-il pas au contraire à l'élève d'être plus responsable, plus autonome par rapport à son choix de réussir ou pas?
- d) la CONCERTATION au niveau du plan de cours **logique de program-mation** (contenu, objectifs spécifiques et examens communs) qui tenait à être en continuité avec les objectifs de formation ou de programme nous a démontré qu'il est possible de travailler avec plus d'homogénéité dans le sens d'une approche-programme au lieu de l'approche-cours éclatée traditionnelle.

Conclusion

Conclusion

Nous avons voulu tout au long de cette recherche aider nos élèves à apprendre pour qu'ils puissent mieux réussir. Et les résultats sont évidents pour nous: nos élèves qui ont persévéré ont tous obtenu la note de passage et développé des habiletés au raisonnement logique. Nos hypothèses ont donc été confirmées. Nous avons la conviction maintenant que c'est au niveau d'une conception de l'enseignement centrée sur l'aide à l'apprentissage que réside la réussite de nos élèves. Là se situe l'essentiel de la pensée de Bloom: la majorité des élèves peuvent réussir avec maîtrise les apprentissages proposés s'ils ont les préalables d'une part et si le professeur met en oeuvre de façon systématique des moyens pour les aider. Ce qui fait du modèle du Mastery Learning une approche difficile, ce ne sont pas tant les méthodes et techniques à mettre en place, d'ailleurs il n'y a rien de tellement nouveau en ce sens, c'est d'accepter d'aller aux sources pour interroger notre philosophie de l'éducation, notre conception de l'enseignement. Bien vite nous serons à même de nous apercevoir à quel point nous privilégions les comportements élitistes: croyance à la courbe normale, soumission à la cote Z, recherche de la "belle" question d'examen que "les meilleurs" pourront "peut-être" réussir! Accepter d'aider à apprendre suppose une façon différente de "regarder" ses élèves et ce n'est pas facile de changer à ce niveau. Mais c'est possible!

Une recherche, aussi satisfaisante soit-elle, laisse cependant des incertitudes, des doutes, des questions. La recherche exploratoire notamment avec les limites qu'on lui connaît induit à penser à une recherche plus vaste avec groupes expérimentaux et groupes contrôles. Et nous sommes bien conscients que l'effet de halo a pu avoir un impact sur nos résultats. De plus, plusieurs observations faites en cours d'expérimentation nous ont permis d'amorcer des questions qui pourraient donner lieu à d'éventuelles recherches: quel est l'impact du Mastery Learning sur la motivation à apprendre des élèves? ou celle des enseignantes et des enseignants à enseigner? quel est l'impact du Mastery Learning sur le développement de l'autonomie? un enseignement de type Mastery Learning aura-t-il un effet à long terme sur la réussite de l'élève? Enfin la question-piège: quel est l'impact d'une approche de type Mastery Learning sur la tâche d'une enseignante et d'un enseignant?

Nous avons beaucoup travaillé, c'est sûr, mais les résultats nous démontrent l'essentiel: le **Mastery Learning** est un excellent moyen d'aider les élèves à apprendre et à... réussir.

Références

Références

Deux dossiers bibliographiques sont actuellement à la disposition des collèges sur le sujet du **Mastery Learning** :

- 1. Bolduc Anicette et Breton Lise, <u>Apprentissage assuré</u>, bibliographie annotée (70 titres CADRE), juin 1981.
- 2. Hivon René, <u>Dossier sur le Mastery Learning</u> (1985) A répertorié 77 articles sur le sujet; analyse informatisée à partir de descripteurs faite par Jacques Gilbert du cégep de Shawinigan et Pierre Matteau du cégep de la Pocatière.

Des documents essentiels:

- 3. Bloom, B., Madaus G. F., Hastings I. J., <u>Evaluation to improve Learning</u>, Mc Graw Hill Co., Montréal, 1981.
- 4. Bloom, B., <u>Caractéristiques individuelles et apprentissages scolaires</u>, Fernand Nathan, Paris, 1979
- 5. Bloom, B., <u>Summary: Second annual Mastery Learning Conference</u>, 27, 28, 29 mai 1981. Eric, in Shabat, Oscar and Others, Chicago, 1982.
- 6. Guskey R. Thomas, <u>Implementing Mastery Learning</u>. Wadsworth Publ. Co., Belmont, Calif. 1985.
- 7. Levine V. Daniel and Ass., <u>Improving Student Achievement through Mastery Learning Programs</u>, Jossey Bass Publishers, San Francisco, London, Washington, 1985.
- 8. Ryan, Doris W., Schmidt Martha, <u>Mastery Learning: Theory. Research.</u> and <u>Implementation</u>, OISE, Ministry of Education of Ontario, 1979.
- 9. Bégin, Dussault, <u>SAGE, un pas vers l'école de demain</u>. Presses de l'Université du Québec, 1982, 218 pages.
- 10. Pépin Lorraine, <u>Apprentissage de la grammaire au secondaire 1 par la pédagogie de la maîtrise</u>, Université du Québec à Rimouski, Janvier 1985.
- 11. Leclerc Jean-Marie, <u>Formation universitaire</u>, <u>professionnalisme et technologie de l'instruction</u>; <u>compte-rendu d'une expérience et actes d'un colloque</u>. Montréal, Association internationale de pédagogie universitaire, 1984, 167 pages.

Des articles essentiels de base:

- 1. Bégin Yves, <u>Vers une réorientation de la psychométrie de l'aptitude: le point de vue de Bloom</u>, dans Revue Québécoise de Psychologie, Vol. 1 no.2, mai 1980.
- 2. Bégin Yves, Dussault Gilles, <u>La pédagogie de la maîtrise ou la redécouverte du bon enseignement</u> dans <u>Vie Pédagogique</u>, 10 décembre 1980, pp. 4 à 16.
- 3. Block, James H., <u>Promoting Excellence Through Mastery Learning</u>, dans <u>Theory into Practice</u>. XIX, 1, Winter 1980, pp. 66 à 74.
- 4. Bloom, Benjamin S., <u>The Search for methods of Group Instruction as Effective as one-to-one tutoring</u>, Educational Leadership, 1984, vol. 41, no. 8, pp. 4 à 17.
- 5. Educational Leadership, <u>A Conversation with Benjamin Bloom</u>, 1979, volume 37, no.2.
- 6. Guskey Thomas R., <u>Mastery Learning</u>: <u>Applying the Theory</u>, Theory into Practice, Spring 1980, pp. 104 à 111.
- 7. Klein, Jerry W., <u>Designing a Mastery Learning Program</u>, Educational Leadership, 1979, vol.37, no.2, pp. 144 à 147.
- 8. Rubin Stephen E. and Spady William G., <u>Achieving Excellence Through Outcome-Based Instructional Delivery</u>. Educational Leadership, 1984, vol. 41, no. 8, pp. 37 44

Annexe A

Test de corrélation de Pearson

PAGE 4 11/23/88 PROJET ML 420-101

FILE	NONAME	(CREATION	DATE	= 1	11/23	3/88)
rill	NUNAME	CKEALION	DWIF		11/6-	,, 00,

			PEARSON	CORRELATION	COEFFICIENT	rs	
	S1	S2	S 3	S4	S 5	S6	S7
S1	1.0000	0.3962	0.3794	0.1666	0.2449	0.1815	0.3536
	(69)	(69)		(66)	(62)	(55)	(54)
	P=0.0	P=0.000	P=0.001	P=0.091	P=0.028		P=0.004
S2	0.3962	1.0000	0.5214	0.4464	0.5052	0.3554	0.6255
	(69)	(69)	(68)	(66)	(62)	(55)	(54)
	P=0.000	P=0.0	P=0.000	P=0.000	P=0.000	P=0.004	P=0.000
S3	0.3794	0.5214	1.0000	0.4565	0.4551	0.4575	0.7210
	(68)	(68)	(68)	(66)	(62)	(55)	(54)
	P=0.001	P=0.000	P=0.0	P=0.000	P=0.000	P=0.000	P=0.000
S4	0.1666	0.4464	0.4565	1.0000	0.6281	0.5483	0.6963
	(66)	(66)		(66)		(55)	(54)
	P=0.091	P=0.000	P=0.000	P=0.0	P=0.000	P=0.000	P=0.000
S5	0.2449	0.5052	0.4551	0.6281	1.0000	0.5052	0.7150
	(62)	(62)	(62)	(62)	(62)	(54)	(54)
	P=0.028	P=0.000	P=0.000	P=0.000	P=0.0	P=0.000	P=0.000
S 6	0.1815	0.3554	0.4575	0.5483	0.5052	1.0000	0.8928
	(55)	(55)	(55)	(55)	(54)	(55)	(54)
	P=0.092	P=0.004	P=0.000	P=0.000	P=0.000	P=0.0	P=0.000
S 7	0.3536	0.6255	0.7210	0.6963	0.7150	0.8928	1.0000
	(54)	(54)	(54)	(54)	(54)	(54)	(54)
	P=0.004	P=0.000	P=0.000	P=0.000	P=0.000	P=0.000	P=0.0

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

Annexe B

Test t de Student pour les 45 su jets

PROJET ML 420-101

11/29/88 PAGE 4

FILE NONAME (CREATION DATE = 11/29/88)

GROUP 1 - 902 POOLED VARIANCE ESTIMATE . SEPARATE VARIANCE ESTIMATE STANDARD DEVIATION NUMBER OF CASES VARIABLE PROB. * VALUE PROD. MEAN * VALUE FREEDOM PROB. * VALUE ERROR GROUP 1 16 VERBALE 01 32.6875 PRO1 22.387 5.597 1.22 0.700 0.997 0.00 33.80 0.996 4.593 32.6552 24.736 GROUP 2 RAISONNEMENT 01 GROUP 1 16 PRO2 41.2500 5.963 23.851 1.82 0.167 24.29 0.495 3.285 GROUP 2 29 45.9655 17.691 GROUP 1 16 55.0625 27.654 6.913 1.01 0.949 -0.19 43 0.848 -0.19 30.95 0.848 56.7241 27.542 5.114 GROUP 2 29 GROUP 1 16 39.1875 25.532 6.383 1.42 0.407 0.353 26.73 0.380 21.395 3.973 GROUP 2 29 32.4828 GROUP 1 16 62.4375 19.387 4.847 1.56 0.304 0.955 25.79 0.958 15.544 2.886 GROUP 2 62.1379 GROUP 1 16 49.4375 19.667 4.917 1.46 0.372 0.23 43 0.823 0.21 26.42 0.833 3.015 GROUP 2 29 48.2069 16.253 P001 GROUP 1 24.773 6.193 1.01 0.942 1.28 0.208 30.89 0.211 4.572 GROUP 2 29 38.5517 24.621

PROJET FILE	PROJET ML 420-101 File Noname (01 (CREATION DATE = 11/29/88)	DATE = 11	/29/88)				-	11/29/88	PAGE	w		
GROUP POCE	GROUP 1 - 902 GROUP 2 - 902		! ! mm !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† † † †	⊢			VANIANCE ESTIMATE	STIMATE +	SEPARATE	SEPARATE VARIANCE ESTIMATE	STIMATE
VARIABLE	NBLE	NUMBER OF CASES	MEAR	STANDARD DEVIATION	STANDARD .	VALUE	F 2-TAIL YALUE PROB.	VALUE	DEGREES OF 2-TAIL	2-TAIL *	VALUE	DEGREES OF FREEDOM	2-TAIL
P002	:	RAISONNEMENT OZ GROUP 2 29	58.5625	•	5.25	1.09	0.890		: : : : : : : :	0.506	0.68	32.20	0.502
P003	9 9	GROUP 2 29	69.1875 74.6552	25.789	6.467	1.31	1.31 0.525	-0.74	£4	494.0	-0.71	27.70	0.483
P004	!	GROUP 2 29 41.1379	41.1379	† 	5.189	1.17	1.17 0.700	-0.06	5	0.00	-0.06	29.06	0.951
P005	GROUP 1 29		73.1875	13.432 15.768	3.358	1.38	1.38 0.521	-0.62	5	0.540	-0.65	33.49	0.522
P006	!	TOTAL DU POST-TEST GROUP 2 29 61.2759	ST .3750 61.2759	17.557 15.609	2 4 3 8 9 8 9 8 9 8 9 8	1.27	1.27 0.572	0.22	43	0.830	0.21	28.07	0.836

FILE	FILE NONAME ((CREATION DATE = 11/29/88)	DATE = 11	1/29/88)	1	•		1	(4	1	1	1 2 1
00 00 00	GROUP 1 - 003		3:	1 1 1 1		- 1		POOLED	POOLED VARIANCE ESTIMATE	STIMATE +	SEPARATE	SEPARATE VARIANCE ESTIMATE	STIMATE
VARIABLE		S		STANDARD	STANDARD	. VALUE	F 2-TAIL VALUE PROB.	T T D	DEGREES OF 2-TAIL	2-TAIL *	VALUE	DEGREES OF	2-TAIL PROB.
P002	!	GROUP 2 16	ı	18.750	3.482	1.67	0.296	0.65		0.516	0.71	38.09	0.485
P 0 0 5		GROUP 1 16	72.1724	25.030	4.648	1.35	0.553	-0.20	43	0,80	-0.21	35.17	0.833
7004	4	GROUP 2 16 36.5000	36.5000	20,455	3.798	1.37	0.530	1.13	5,	0.256	1.21	35.39	0.236
200a	GROUP 2 16	16 16	75.6207		2.935	1.37	0.527	0.35	5 5 1 1 1 1	0.731	0.36	35.42	0.719
P 0 0 6	1	GROUP 2 16 59.1875	T-TEST 63.0345 59.1875	16.187	3.006	-0.	276.0	0.76	43	0.450	0.76	30.93	0.453

PROJET ML 420-101

FILE NONAME (CREATION DATE = 11/29/83)

11/29/88 PAGE 10

								•						
GROUP GROUP	1 -	904 904	G E L T	21:				•	POOLED	VARIANCE E	STIMATE	* SEPARAT	E VARIANCE E	ESTIMATE
AIFAV	BLE		NUMBER Of Cases	MEAN	STANDARD DEVIATION	STANDARD ERROR	• VALUE P	TAIL ROB.	VALUE	DEGREES OF FREEDOM		• • T	DEGPEES OF FREEDOM	2-TAIL PROB.
PRO1		COMPR UP 1 UP 2	EHENSION VI	RBALE 01 34.0526 31.6538	22.230 25.053	5.100 4.913	1.27 0	.608	0.33	43	0.741	0.34	41.30	0.737
PRO2		RAISO UP 1	NNEMENT 01 19 26	44.9421 43.8846	24.952 15.885	5.724 3.115	* 2.47 C	0.037	0.16	43	0.876	0.15	28.45	0.884
PRO3		SERIE UP 1	LETTRE (-1 19 26	51.4737 59.5385	28.381 26.478	6.511 5.193	1.15 0	.735	-0.98	43	0.333	* * * -0.97	37.31	0.339
PRO4		APTITUP 1	UDE NUMERI 19 26	20E 01 44.2105 28.0385	25.568 18.353	5.866 3.599	1.94	.124	2.47	43	0.017	2.35	30.95	0.025
PRO5		DIAGR	AMME 01 19	63.4737	18.007 16.147	4.131 3.167	* 1.24 C	.603	0.42	43	0.680	0.41	36.33	0.685
PRO6		TOTAL	DU PRE-TE 19 26	\$T 50.7895 47.0769	17.536 17.353	4.023 3.403	1.02 (3.943	0.71	43	0.484	0.70	38.71	0.485
P001		COMPR OUP 1	EHENSION V	ERBALE 02 49.5263 36.5769	23.566 24.768	5.406 4.857	1.10).941	1.77	43	0.084	1.78	40.02	0.082
			20	30.3107	24.700	4.07	•	•						

PROJET File	PROJET ML 423-101 File Noname (O1 (CREATION DATE = 11/29/83)	DATE = 11	/29/88)				-	11/29/88	PAGE	=		
1 00 1 00 1 00	GROUP 1 - 904	1 1 91 1	1	1 1 1 1	1 1 2 4 1	- - - -							1 4 5
VARIABLE		NUMBER OF CASES	MEAN	STANDARD DEVIATION	STANDARD	VALUE	F 2-TAIL VALUE PROB.	VALUE	VALUE FREEDOM PROB.	F 2-TAIL *	VALUE	DEGREES OF FREEDOM	2-TAIL PROB.
P002		GROUP 4 SONNEMENT 02 GROUP 2 26	58.8947	19.356 15.678	3.075	1.52	1.52 0.325	0 8 0	7	0.381	0.86	33.80	0.398
P003		GROUP 2 26	74.9421	20.667	5.070	1.56	1.56 0.331	0.51		0.611	0.53	42.60	0.598
P004	GROUP 1 GROUP 2	GROUP 1 26 30.576	UE 02 42.9474 30.5769	19.208	3.930	- 0	1.09 0.867	0.57	£ 3	0.574	0.57	39.86	0.571
500	GROUP 1 GROUP 2 26	АММЕ 02 19 26	75.3684	13.845	3.176	1.31	0.556	0.12	43	0.902	0.13	41.57	0.900
P006	TOTAL DU POST-TEST 64.5263 GROUP 2 26 59.5769	GROUP 1 9 ST-TEST 64.5263 GROUP 2 26 59.5769	\$1 64.5263 59.5769	14.762	3.387	1.33	0.535	1.02	43	0.315	1.04	41.68	0.304

PROJET FILE	PROJET ML 420-101 FILE NONAME (01 (CREATION DATE = 11/29/88)	DATE = 11.	/29/88)				-	11/29/88	PAGE	7.		
1 00 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GROUP 1 - 005			1 1 1 1 1 1	1 3 9 1	- - -					1 4		
VARIABLE	181 6	NUMBER OF CASES	MEAN	STANDARD	STANDARD	VALUE	2-TAIL PROB.	POOLED T VALUE	VARIANCE ESTIMATE DEGREES OF 2-TAIL FREEDOM PROB.	F 2-TAIL + PROB.	VALUE	DEGREES OF	2-TAIL PROB.
P002	OOZ GROUP 1	GROUP 2 17		17.794 15.108	3.363	1.30	1.39 0.500	1.80	۲3	0.078	88	38.23	0.068
P 0 0 3	:	GROUP 1 LETTRE 02 GROUP 2 17	70.8214	25.221	4.766	1.43	1.43 0.457	-0.68	5.7	267.0	-0.72	38.62	0.478
4004	!	GROUP 2 17 41.8824	UE 02 40.4643 41.8824	19.585	3.701	1.05	1.05 0.889	-0.23	57	0.817	-0.23	33.30	0.818
P005	GROUP 2 17	14 M 4 E 28 2 B 17	77.0357	15.476 13.677	2.925 3.317	1.28	0.615	1.16	£.	0.254	1.19	37.22	0.241
P006	GROUP 2	GROUP 2 17 59.0000	ST 63.2857 59.0000	17.181	3.247	1.43	1.43 0.456	98		0.394	06.0	38.63	0.373

2-TAIL PROB 0.480 0.066 0.465 0.225 SEPARATE VARIANCE ESTIMATE 0.133 0.462 0.681 DEGREES OF FREEDOM 38.86 37.97 31.28 25.81 37.02 28.91 34.21 VALUE 0.71 0.41 1.24 72.0 1.91 0.74 1.54 PAGE POCLED VARIANCE ESTIMATE VALUE FREEDOM PROB. 0.500 0.211 0.425 297.0 0.051 0.692 11/29/88 43 43 43 **6**3 43 43 07.0 0.68 1.27 1.49 72.0 2.01 0.81 0.432 0.993 1.36 0.528 0.110 0.628 0.356 1.99 1.46 1.48 1.22 1.02 STANDARD 6.018 3.359 4-206 3.029 3.843 3.362 4.739 5.086 4.791 5.249 6.035 5.481 6.726 3.711 24.812 20.02 25.350 21.641 16.029 15.843 17.791 17.712 25.078 17.773 24.884 29.003 27,731 19.637 (CREATION DATE = 11/29/89) VERBALE 02 58.2353 PRO4 APTITUDE NUMERIQUE 01 GRCUP 1 17 39.8959 51.7059 39.7857 32.7143 66.2941 53.5204 45.6786 54.8571 59.7857 30.7857 COMPREHENSION VERBALE 01 TOTAL DU PRE-TEST GROUP 1 SERIE LETTRE 01 GROUP 1 COMPREHENSION GROUP 1 PROS DIAGRAMME 01 28 23 PROJET ML 420-101 NONAME PRO3 SERI GROUP 2 GROUP 1 - 906 GROUP 2 GROUP 2 GROUP 2 GROUP 2 VAGIABLE PR02

FILE NONAME		201.000	(CREATION DATE = 11/29/88)	/29/88)								1	(
1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GROUP 1 006	ו ניט ו	! ! ! *** !	1 1 1 1 1 1	1 1 1 1 1	w ⊢ •	! ! ⊢ ∽	POOLED V	POOLED VARIANCE ESTIMATE	STIMATE	SEPARATE	SEPARATE VARIANCE ESTIMATE	STIMATE
VAZIABLE		NUMBER OF CASES	MEAN	STANDARD DEVIATION	STANDARD	r VALUE	F 2-TAIL *	VALUE	DEGREES OF 2-TAIL FREEDOM PROB.	2-TAIL *	VALUE	DEGREES OF FREEDOM	2-TAIL PROB.
P002		GROUP 2 28	57.8235	20.076	4.869	1.65	1.65 0.245	8 4 9 9	43	0.633	0.45	27.73	0.655
P003		GROUP 1 CETTRE 02	74.2941	21.383	5.186	1.39	1.39 0.497	0.35	£3	0.730	0.36	38.26	0.720
700d	•	GROUP 2 28 41.9286	10E 02 39.4706 41.9286	20.307	4.925	1.10	1.10 0.806	17.0-	٤ ۶	0.687	0,0-	32.67	0.691
P005	POOS GROUP 1 TAMME 02 GROUP 2 28	•	79.8824		3.980	1.5	0.333	1.74	6.3	0.090	1.65	28.69	0.110
P 0 0 6		GROUP 2 28 59.5000	EST 59.5000	15.052	3.651	1.22	0.686	9	87	0.252	1.19	36.62	0.242

GROUP 2 - 607 E 6 2:	PROJE	PROJET ML 420-101 File noname (1 (CREATION DATE	DATE = 11	= 11/29/88)				-	88/67/11	# ₹	<u>-</u>		
SECOND STANDARD	1 00 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		· -~	•	† † † † † † † † † † †	- - -							1 2
GROUP 2 34 33.9706 22.534 3.865 1.51 0.361 -0.65 43 0.522 -0.58 GROUP 2 34 33.9706 22.534 3.865 1.51 0.361 -0.65 43 0.522 -0.58 GROUP 2 34 43.0000 17.641 3.025 2.26 0.077 0.76 43 0.653 0.643 GROUP 2 34 43.0000 17.641 3.025 2.26 0.077 0.76 43 0.653 0.613 GROUP 2 34 55.0588 26.765 4.500 1 1.25 0.598 0.046 43 0.650 0.35 GROUP 2 34 34.8529 23.330 4.001 1.07 0.972 0.01 43 0.650 0.35 GROUP 2 34 15.527 23.753 7.162 2.78 0.056 0.46 43 0.650 0.35 GROUP 2 34 61.5882 14.251 2.444 2.556 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 14.002 24.077 7.259 2.50 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 14.002 24.017 1.22 0.055 0.59 43 0.559 0.550	VARI		NUMBER)F CASES	MEAN	STANDA9D DEVIATION	STANDARD	* VAĽUĆ		VALUE	DEGREES OF FREEDOM	F 2-TAIL	VALUE	FREEDOM	2-TAIL PROB.
GROUP 2 34 43.0000 17.641 3.025 2.26 0.077 0.76 43 0.653 0.662 GROUP 2 34 43.0000 17.641 3.025 2.26 0.077 0.76 43 0.648 0.43 GROUP 2 34 55.0588 26.765 4.590 1.25 0.598 0.46 43 0.648 0.43 GROUP 2 34 55.0588 26.765 4.590 1.07 0.972 0.01 43 0.648 0.01 GROUP 2 34 34.8229 23.330 4.001 1.07 0.972 0.01 43 0.650 0.35 GROUP 2 34 61.5882 14.251 2.444 2.77 7.259 2.59 0.039 0.32 43 0.550 0.25 GROUP 2 34 49.1765 14.962 2.566 2.59 0.039 0.39 43 0.559 0.56	PRO1	GROUP 1	16NSION VE	28.6364	27.670	8.343	1.5	!	-0.65	43	0.522	:	14.55	0.570
GROUP 2 34 45.2727 26.503 7.991 2.26 0.077 0.76 43 0.453 0.662 GROUP 2 34 55.058 26.765 4.590 1.22.576 6.807 1.07 0.972 0.01 43 0.994 0.014 GROUP 2 34 34.8529 23.330 4.001 2.444 0.001 1.07 0.072 0.01 43 0.650 0.001 GROUP 2 34 4.8727 23.753 7.162 2.58 0.039 0.035 0.046 43 0.650 0.035 GROUP 2 34 4.81765 14.962 2.566 2.59 0.039 0.035 43 0.754 0.055 GROUP 2 34 4.81765 14.962 2.566 2.59 0.039 0.035 43 0.754 0.055 GROUP 2 34 4.81765 14.962 2.566 2.59 0.039 0.059 43 0.754 0.055 GROUP 3 34 4.81765 14.962 2.566 2.59 0.039 0.059 43 0.754 0.055 GROUP 3 34 4.81765 14.962 2.566 2.59 0.039 0.059 43 0.754 0.055 GROUP 3 34 4.91765 14.962 2.566 0.059 0.059 43 0.559 0.055			7	•			•		*					
GROUP 2 34 43.0000 17.641 3.025	PR02	!		48.2727	26.503	7.991		1		.,				
GROUP 2 34 55.0588 26.765 4.590 GROUP 2 34 55.0588 26.765 4.590 GROUP 2 34 34.8529 23.330 4.001 GROUP 2 34 34.8529 23.330 4.001 GROUP 2 34 61.5882 14.251 2.44 GROUP 2 34 60.009 24.077 7.259 GROUP 2 34 68.1765 14.962 2.566 GROUP 2 34 68.1765 14.962 2.566 GROUP 2 34 68.1765 14.962 2.566 GROUP 2 34 60.7941 24.112 1.22 0.825 0.59 43 0.559 GROUP 2 34 60.7941 24.112 4.187 1.22 0.825 0.59 43 0.559			34	43.0000	17.641	3.025	, ,			;	000	9	, , , , , , , , , , , , , , , , , , ,	0.0
GROUP 2 34 55.0588 26.765 4.590 1.23 0.375 0.001 43 0.994 0.001 GROUP 1 110 E NUMERIAUE 01 22.576 6.807 1.07 0.972 0.001 43 0.994 0.001 GROUP 2 34 34.8529 23.330 4.001 1.07 0.972 0.001 43 0.994 0.001 GROUP 2 34 61.5882 14.251 2.444 2.446 2.559 0.039 0.32 43 0.450 0.25 GROUP 2 34 48.1765 14.962 2.566 2.59 0.039 0.32 43 0.554 0.25 GROUP 2 34 48.1765 14.962 2.566 2.59 0.039 0.30 43 0.554 0.556 GROUP 2 34 40.7941 24.112 4.187 1.22 0.625 0.599 43 0.559 0.556		GROUP 1	LETTRE 01	59.4545	29.898	9.014		•		 			; ; ; ; ; ; ; ;	
GROUP 2 34 34.8529 23.330 4.001 1.07 0.972 0.01 43 0.994 0.001 GROUP 2 34 34.8529 23.330 4.001 2.78 0.026 0.46 43 0.994 0.35 0.001 0.35 0.001 0.35 0.001 0.35 0.002 0.35 0.026 0.46 43 0.650 0.35 0.25 0.039 0.35 43 0.754 0.25 0.25 0.039 0.32 43 0.754 0.25 0.25 0.625 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.		2	34	55.0588	26.765	005.7	-			ĵ		1	15.24	0.0
GROUP 2 34 34.8529 23.330 4.001 10 0.76 0.06 43 0.650 0.35 GROUP 1 11 64.2727 23.753 7.162 2.78 0.026 0.46 43 0.650 0.35 GROUP 2 34 61.5882 14.251 2.444 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 48.1765 14.962 2.566 2.566 0.039 0.32 43 0.754 0.25 GROUP 2 34 40.7941 24.112 4.187 1.22 0.625 0.59 43 0.559 0.56	PR04	:		34.9091	22.576	6.807	•	:	•				f	
GROUP 1 GROUP 2 34 61.5882 14.251 2.444 2.78 0.026 0.46 43 0.650 0.35 GROUP 2 34 61.5882 14.251 2.444 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 14.962 2.566 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 14.962 2.566 2.566 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 40.7941 24.412 4.187 1.22 0.625 0.59 43 0.559 0.556			34	34.8529	23.330	4.001	-			;	***		4	366.0
GROUP 2 34 61.5882 14.251 2.444	PR05	;	*** 01	64.2727	23.753	7.162			* * *	•				
GROUP 2 34 49.1765 14.962 2.566 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 14.962 2.566 2.566 2.59 0.039 0.32 43 0.754 0.25 GROUP 2 34 49.1765 2.566 2		GROUP 2	34		14.251	5.444	•			ĵ		66.0	14.51	0.129
GROUP 2 34 48.1765 14.962 2.566 2 5.56	PR06	GROUP 1	12	i -	24.077	7.259		ł			* * * *			
GROUP 1 11 45.9091 27.002 8.141 1.22 0.625 0.59 43 0.59 0.56 GROUP 2 34 40.7941 24.412 4.187 1.22 0.625 1.000 2.0000 2.0000 2.00000000000000000		GROUP 2		49.1765	14.962	2.566			20.00	n #	***	63.0	00.21	0.00
2 34 40.7941 24.412 4.187 4 1.52 0.55	1009	•	HENSION VI	ERBALE 02	27.002	8.141	•	!			0	4		
			3,6	40.7941	24.412	4.187	-			}		95.0	00.	• • •

PROJEI FILE	PROJET ML 420-101 FILE NONAME C	O1 (CREATION DATE = 11/29/88)	DATE = 11	/29/88)				-	11/29/88	PAGE	20		
GROUF	GROUP 1 - 007	1 1 00 1 00 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	- - - - - - - - - -					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T T T T T T T T T T T T T T T T T T T	STIMATE
VARIABLE	ABLE	NUMBER OF CASES	MEAN	STANDARD DEVIATION	STANDARD	+ F 2-TAIL + VALUE PROB.	2-TAIL *	VALUE	DEGREES OF 2-TAIL FREEDOM PROB.	2-TAIL *	VALUE	DEGREES OF	2-TAIL PROB.
P 202	•	GROUP 1 SONNEMENT UZ	60.0000	19.282	5.814		1.33 0.508	0.83	5	0.4.0	0.77	15.17	0.452
P 0 0 3		GROUP 1 SERIE LETTRE 02 GROUP 2 34	68.2727 74.1471	30.660	9.244	2.09	2.09 0.110	-0.71	53	0.480	-0.59	13.24	0.564
7004		GROUP 1 11 40.7677 GROUP 2 34 40.7647	10E 02 40.7647	22.227 18.955	6.702	1.38	1.38 0.469	0.14	5,	0.889	0.13	15.01	0.899
2009		AMME 02 11 34	72.8182	16.382	2.497	1.27	1.27 0.578	-0.57	 	0.574	-0.53	15.46	0.602
9004		GROUP 1 10 TO TEST 6 GROUP 2 34 6	51.4545 61.7353	20.825 14.689	6.279	2.01	2.01 0.129	-0.05	43	0.061	-0-04	13.37	0.968
													: ! !

PAGE 22

11/29/88

PROJET ML 420-101

FILE NONAME (CPEATION DATE = 11/29/88)

GROUP 1 - 908 GROUP 2 - 908 POOLED VARIANCE ESTIMATE . SEPARATE VARIANCE ESTIMATE STANDARD VARIABLE VALUE FREEDOM PROB. + VALUE MEAN DEVIATION ERROR PRO1 COMPREHENSION VERBALE 01 GROUP 1 26 32.5385 4.291 21.982 1.58 0.301 -0.18 26.53 0.864 GROUP 2 16 33.9375 27.523 6.881 PRO2 RAISONNEMENT 01 39.2692 16.240 3.185 2.25 0.070 + -2.01 23.27 0.080 6.096 GROUP 2 16 51.8750 24.385 PRO3 SERIE LETTRE 01 5.332 52.6538 27.190 1.01 1.000 0.342 -0.96 32.03 0.343 27.044 6.761 GROUP 2 16 60.9375 GROUP 1 26 35.5769 35.5769 22.334 4.380 1.31 0.539 -0.09 28.65 0.931 GROUP 2 36.2500 25.523 6.381 16 DIAGRAMME 01 GROUP 1 58.7308 13.466 2.641 2.35 0.057 -1.67 0.103 -1.51 22.93 0.144 GROUP 2 16 67.5000 20.656 5.164 GROUP 1 26 4 45.8846 14.833 2.909 2.01 0.119 -1.39 0.173 24.24 0.213 5.254 GROUP 2 16 53.5625 21.014 COMPREHENSION VERBALE OZ 4.632 23.619 1.22 0.640 * -1.45 0.156 29.45 0.169 6.524 GROUP 2 16 48.3750 26.094

PROJE FILE	T ML 420 NONAME		ATION	DATE = 11	/29/88)					11/29/88	PAGI	23		
GROUP GROUP	1 - 008		E	§:	· • • • • •		• † - † £	ST	* POOLED	VARIANCE	ESTIMATE	SEPARAT	E VARIANCE	ESTIMATE
VARIA	BLE	NUM OF C	BER ASES	MEAN	STANDARD DEVIATION	STANDARD ERROR	. VALUE	2-TAIL PROB.	. VALUE	DEGREES OF	PROB.	VALUE	DEGREES OF FREEDOM	2-TAIL PROB.
P002	GROUP 2		NT 02 6	54.9615 61.6875	14.893 17.312	2.921 4.328	1.35	0.491	-1.34	40	0.189	-1.29	28.26	0.208
P003	GROUP 1		RE 02	71.9462 72.9375	22.982 26.8 ₀ 1	4.487 6.715	1.38	0.464	-0.14	40	0.889	-0.14	28.03	0.893
P004	GROUP 2		UMERIC 6	41.0000 41.0000	20.140 21.040	3.950 5.260	1.09	0.821	0.0	40	1.000	0.0	30.81	1.000
P005	GROUP 1		6	74.0769 76.6250	14.508 15.344	2.845 3.836	1.12	0.780	-0.54	40	0.592	* -0.53	30.50	0.597
P006	GROUP 2	_	0ST-TE	59.8462 64.3750	15.281 17.772	2.997	1.35	0.489	-0.88	40	0.386	* -0.85	28.24	0.405

0.365 0.540 SEPARATE VARIANCE ESTIMATE 0.086 0.617 0.187 0.514 0.223 23.77 32.36 20.63 21.41 24.63 26.65 24.33 VALUE 0.62 -0.92 1.79 -0.51 1.36 99.0 -1.25 2 PAGE POOLED VARIANCE ESTIMATE VALUE FREEDOM PROB. 0.349 0.578 0.079 0.150 0.211 0.581 0.521 11/29/88 43 43 **63** 43 43 43 0.56 1.80 -0.56 -0.95 1.47 0.65 -1.27 0.277 0.825 VALUE PROS. 0.740 0.312 0.871 0.847 0.382 1.08 1.14 1.70 1.61 1.46 1.13 1.05 STANDARD 7.186 2.790 5.014 3.189 4.465 692.9 7.228 4.381 4.172 6.615 3.809 3.861 4.407 772.5 STANDARD 26.415 27.046 24.394 21.210 26.883 15.534 17.757 16.705 25.326 23.226 24.750 16.489 18.761 21.497 (CREATION DATE = 11/29/88) COMPREHENSION VERBALE 02 VARIABLE NUMBER MEAN OF CASES MEAN PROTECTION OF 1 310N VERBALE 01 37.6429 45.4194 60.9355 45.5000 APTITUDE NUMERIQUE 01 GROUP 1 31 33.5806 37.7143 42.6774 56.8571 49.7742 46.1429 49.0000 41.7857 GROUP 1 31 RAISONNEMENT 01 SERIE LETTPE 01 GROUP 1 DIAGRAMME 01 GROUP 1 14 14 7 7 14 1, 8<u>-</u> PROJET ML 420-101 NONAME GROUP 2 GROUP 1 - 009 GROUP 2 - 009 1 FILE PR02 PR03 PROS P001 PR04

PROJET File	PROJET ML 420-101 File Noname (O1 (CREATION DATE = 11/29/85)	DATE = 11.	729/88)				11	11/29/89	PAGE	92		
680 680 690 690	GROUP 1 1 1 0009 1	 	1 1 1 1 1	1 1 1 1	1 1 1 1	- - - -	: • •		TAMITS ROWALDAY OF LOOP	TIMATE +	SEPARATE	SEPARATE VARIANCE ESTIMATE	STIMATE
VAQIABLE	1816	NUMBER OF CASES	MEAR	STANDARD DEVIATION	STANDARD	F 2-TAIL * VALUE PRUB.	TAIL +	VALUE DI	DEGREES OF 2-TAIL FREEDOM PROB.	2-TAIL +	VALUE	DEGREES OF	2-TAIL PROB.
P 0 0 2		GROUP 2 14	58.3226	17.585	3.158	1.18 0.778	8.4.0	1.22	٤٦	0.229	1.26	27.20	0.218
P003	·	GROUP 1 LETTRE 02 GROUP 2 14	71.8065	26.546	4.768	2.76 0.056	950-0	-0.38	84	0.707		39.25	0.652
7004	GROUP 2	APTITUDE NUMERIQUE 02 GROUP 1 31 42.5161 GROUP 2 14 37.6429	UE 02 42.5161 37.6429	21.057	3.782	1.76 0.280	0.280	0.77	5	0.445	0.86	32.89	0.397
P005	ODS DIAGRAMME OZ GROUP 2 14	AMME 02 14	77.1935	14.513	2.607	00	0.812	97.		0.152		54.24	0.164
P006	!!	GROUP 2 14 59.0000	\$1.8710 \$9.0000	16.958 14.374	3.046	1.39 0.537	0.537	92.0	43	0.463	0.79	59.44	0.436

2-TAIL PROB. 0.330 0.069 0.050 SEPARATE VARIANCE ESTIMATE 0.082 0.253 0.064 0.134 7.68 6.83 7.46 66.7 5.55 7.41 5.53 VALUE -1.04 2.14 5.99 2.26 1.25 -2.17 -1,73 28 PAGE POOLED VARIANCE ESTIMATE VALUE FREEDOM PROB. 0.506 0.140 0.055 0.139 0.032 0.057 0.414 **6**3 ç 1.96 0.82 1.51 1.97 -2.22 -1.51 -0.67 0.780 0.811 VALUE PROB. 0.384 0.298 0.267 0.801 0.291 3.18 2.51 3.01 1.06 1.44 2.96 1.42 STANDARD 3.892 6.177 9.320 2.610 6.160 2.839 4.665 3.928 3.202 5.722 4.315 7.038 3.459 10.063 16.509 STANDARD 13.813 10.431 21.875 24.846 20.840 20.250 13.773 17.956 24.616 12.795 27.289 15.738 22.501 (CREATION DATE = 11/29/83) 0007.07 42.6000 57.6000 COMPREHENSION VERBALE 01 GROUP 1 43 58.8750 APTITUDE NUMERIQUE 01 GROUP 1 43 63.9250 48.8000 COMPREHENSION VERSALE 02 39.4000 45.8500 31.8000 34.2000 25.4000 TOTAL DU PRE-TEST GROUP 1 GROUP 1 40 GROUP 1 40 NUMBER OF CASES DIAGRAMME 01 Ŋ S 5 PROJET ML 420-101 NONAME GROUP 2 GROUP 2 GROUP 2 GROUP 2 SROUP 2 VARIABLE GROUP 1 : P R 0 S PR06 1004 P.R01 PR03 P.R.04 PR02

PROJE FILE	PROJET ML 420-101 File noname (O1 (CREATION	1 (CREATION DATE = 11/29/88)	/29/88)				•	11/29/88	PAGE	62		
1 00	GROUP 1 1 1 2 2 10 1	1 1 00 1 1 1		1 1 1 1	1 1 1 1	₩ - -						THE THE STATE OF T	STIMATE
VARIABLE		NUMBER OF CASES	MEAN	STANDARD	STANDARD ERROR	* VALUE	F 2-TAIL VALUE PROB.	VALUE	DEGREES OF 2-TAIL FREEDOM PROB.	2-TAIL +	VALUE	DEGREES OF	2-TAIL PROB.
P002		GROUP 2 5	57.2500	17.218	2.722	1.00	1.00 1.000	1.13	£ 7	0.264	1.13	5.06	0.308
P 0 0 3		GROUP 1 CETTRE 02	TTRE 02 72,7000 5 72,8000	24.500	3.874	2.12	2.12 0.499	-0.01	87	M 66	-0.01	6.35	0.991
P004		GROUP 1 100E NUMERIQUE 02 5750 GROUP 2 5 5 44.4000	44.4000	20.348	3.217	2.80	2.80 0.325	-0.41	4.3	0.0	-0.61	7.20	0.564
P005	GROUP 2 S	AMME 02 60 5	76.5250	14.839 9.706	2.346	2.34	2.34 0.425	1.95	5	0.0	2.70	6.62	0.031
P006	:	GROUP 2 5 5	51.9500 59.4000	16.729 11.349	2.645	2.17	2.17 0.471	0.33	5.3	0.743	0.45	6.42	0.672
	:) 										

PROJE	PROJET ML 420-101	=						-	11/29/88	PAGE	31		
FILE	RONAME	CCREATION	(CREATION DATE = 11/29/88)	729/88)	1 1 1 1	-	:	1	1	1 1	1	1 1	•
28 20 20 9 9	2 - 011	шш 00	7:					POOLED	POOLED VARIANCE ESTIMATE	STIMATE .	SEPARAT	SEPARATE VARIANCE ESTIMATE	STIMATE
VARIABLE		NUMBER OF CASES	MEAN	STANDARD	STANDARD	VALUE	2-TAIL PROB.	VALUE	DEGREES OF FREEDOM	F 2-TAIL *	VALUE	DEGREES OF FREEDOM	2-TAIL PROB.
10 A 0 1	GROUP 2	COMPREHENSION VERBALE 01 GROUP 2 14 43.2857	ERBALE 01 27.8710 43.2857		4.211	1.22	0.729	-2.10	2	0.042	89 	27.61	0.038
PR02	1	10	46.5806	20.931	3.759	#####	0.663	1.15	£3	0.256	1.24	30.28	0.225
PR03	:	LETTRE 01 14	59.8710 47.8571	27.916 24.757	5.014	1.27	0.664	1.38	£3	0.174	2.	28.19	0.159
PR04	:	10E NUMER 10	NUMERIQUE 01 31 34, 1290 14 36, 5000	21.651 26.226	3.889	1.47	0.375	-0.32	5 3	0.752	-0.30	21.36	0.770
PR05		АМЖЕ 01 31	65.0000	15.393	2.765	1.67	0.370	1.67	£\$	0.102	1:55	21.32	0.136
9 R 0 6		00 PRE-TEST 14	ST 49.3871 47.0000		3.212	1.17	7 0.797	0.42	£ 7	0.674	97.0	27.04	0.666
000	1	COMPREHENSION VERBALE 02 GROUP 1 31 37.3226 GROUP 2 14 52.5000	ERBALE 02 37.3226 52.5000	24.554	4.410	1.16	. 0.831	-1.96	t 3	0.057	-2.01	26.78	0.055

PROJET FILE	PROJET ML 420-101 FILE NONAME (101 (CREATION DATE = 11/29/88)	DATE = 11	/29/88)				11.	11/29/88	PAGE	32		
GROUP	GROUP 1 - 011		1	:	1	E	: : : : : : : : : : : : : : : : : : : :	•	1	1 1	1 1 1	t 1 1	1 1
S S OUT	110 - 2	9	۶.				*	POOLED VA	POOLED VARIANCE ESTIMATE	STIMATE .	SEPARATE	SEPARATE VARIANCE ESTIMATE	STIMATE
VARIABLE	BLE	NUMBER OF CASES	MEAN	STANDARD	STANDARD	* VALUE PROB.	PROB. *	VALUE DE	DEGREES OF 2-TAIL FREEDOM PROB.	2-TAIL +	VALUE	DEGREES OF	2-TAIL PROB.
P002	POOZ GROUP 1	GROUP 1 SONNEMENT 02	58.5806	17.654	3.171	4	***	; ; ; ; ; ; ;		* * * * * * * * * * * * * * * * * * * *	77 -	28.05	0.161
1	GROUP 2	16	51.0000	15.738	4.206		***		;				
P003	ł .	GROUP 1 SERIE LETTRE 02	72.3548	56.448	4.750					* *			8.41
	GROUP 2	14	73.5000	16.519	4.415	* 2.56 U.U/S	* * * \$ 0.0		?	* * *		20.67	
P004	•	GROUP 1 TTUDE NUMERIQUE 02	10E 02	21.230	3.813				1 1 1 1 1 1 1 1	* * * ·			0 %
	GROUP 2	14	37.2857	15.198	4.062	^ * * *	* 702.0	\$ • \$	7	* * * % A ? • D		7 · · · · · · · · · · · · · · · · · · ·	
6009	GROUP 1 31	RAMME 02	77.8710	14.331	2.574							77 76	740
,	GROUP 2	14	68.7857		3.920	^ - · ·	* * *	66.	?	***	<u>:</u>		
P006	GROUPOTAL	GROUP 1 ST 31 62.7742	51 52.7742	16.948	3.044							20.25	0.675
1	GROUP 2	GROUP 2 14 59.2143	59.2143	14.460	3.865	***************************************	***	0	?				

PROJE FILE	PROJET HL 420-101 FILE NONAME ()1 (CREATION 	1 (CREATION DATE = 11/29/88) 	/29/98)	1 1 1 1	w • •		1	11/29/38	1 PAGE	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1
280 200 70 70	1 - 012	шш	- ~					POOLED	VARIANCE	ESTIMATE +	SEPARATE	VARIANCE	ESTIMATE
VARIABLE		NUMBER OF CASES	MEAN	STANDARD	STANDARD	* VALUE	2-TAIL	VALUE	DEGREES OF FREEDOM	F 2-TAIL *	VALUE	LL.	2-TAIL PROB.
PR01	GROUP 2	COMPREHENSION VERBALE 01 GROUP 1 22 33.2727	ERBALE 01 33.2727 32.0870	26.771	5.708	1.65		0.17	4 3	698.0	:	39.71	0.870
PR02	RAISONNEMENT GROUP 1 22 GROUP 2 23	4NEMENT 01	53.2273	19.840	4.230	67.	0.362	3.24	43	0.005	3.23	40.65	0.002
1 0 1 0 1 0	SEAIE LETTRE SROUP 2 23	3 3	62.7273	27.715	5.909	1.15	0.751	1.61	43	0.114	1.61	42.45	0.114
1 d 1 d 1 d	GROUP 2	UDE NUMERI 22	NUMERIOUE 01 22 23 33.0870	23.865	5.088	1.1	0.755	0.53	73	0.600	0.53	42.46	0.600
P.R.05	GROUP 1	22	68.	12.810	2.731	2.07	0.1.0	2.41	73	0.021	27.2	39.31	0.020
9 8 0 6 9 6	GROUP 1 GROUP 2	0U PRE-TEST	ST 54.1364 43.3913	16.075 17.175	3.581	1.14	0.764	2.16	73	0.036	2.17	42.98	0.036
P001	GROUP 1	EHENSION V 22	GROUP 1 22 38.3043	25.813 23.858	\$.503 4.975	1.17	0.716	1.03	57	0.307	1.03	42-35	0.308

PROJET FILE	PROJET ML 42G-101 File Moname (O1 (CREATION DATE = 11/29/88)	DATE = 11	729788)				-	11/29/88	PAGE	35		
1 00 mm	1 00 P P P P P P P P P P P P P P P P P P	1 1 CC 1	! ! !	: : : :	† † † †	⊞ - -	1 + 1 1 1	1 2		1 1 5		TAMES BOXAN	TIMATE
VARIABLE	1915	NUMBER OF CASES	E M	STANDARD	STANDARD	* F 2-TAIL * VALUE PROB.	2-TAIL +	VALUE	DEGREES OF FREEDOM	F 2-TAIL .	VALUE	DEGREES OF	2-TAIL
P002		GROUP 2 23	63.6635 48.9130	16.028	3.417		1.08 0.852	3.10	t t t t t t t	0.00 v	3.19	42.69	0.003
P 0 0 3	GROUP 2	GROUP 1 23 CROUP 2 23	77.8182	22.279 24.308	6,750	0	* 269°O	77.		0.158	1.64	42.93	0.158
P004	OO4 GROUP 1	GROUP 2 23 37.2609	UE 02 4.9091 37.2609	20.291	4.326 3.850	1.21	0.663	1.32		0.193	1.32	42.18	0.194
P005	GROUP 2 23	A #46 20 2 2 2 3 2 3	80.9091 69.4348	13.856	2.954	00	\$66.0	2.77	7 1 1 7	0.008	2.77	42.92	0.008
P009	GROUP 1	GROUP 1 23 56.0870 56.0870	54.5000 56.0870	15.964 14.526	3.403	1.21	1.21 0.663	2.51	۲۶	0.016	2.51	42.18	0.016

Annexe C

Test du Chi2

ET ML 420-101		•	;				11/29/88	PAGE	
ຽ	NOIL	= 11/29	/29/88)		:	•			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	W CN WICH	• •	S C E) B V L S	CROSSTABULATION (F	GROUPE	* * * * * * * *		•
•	• • • •	• •	•	• • •	•	•			1 0f 1
COUNT I	JOURS 01	JOURS 02	02 SOIR	LASI	300				
1 601	1.1	2.1	. N	1	- H				
	100 100 100 100 100 100 100 100 100 100	040	47.46 0.424	144 244 1245	4 9 0,0				
NON 2	0.04	1	28- 18- 26-	HHHHH HHHH HW HW HW HW HW HW HW HW HW HW	ыннн 2. • 2. • М−				
COLUMN TO TOTAL	33.3		20.0		100,0				
NIMUM EXPECTED 6.8	SO OX) OF FREDUENC 7225 WITH	¥	TO CELLS	HAVE EXP	YALIQ CELLS MAVE EXPECTED CELL FREQUENCY LESS THAN 5.0. 3.422 Segrees of Freedom Significance = 0.1814	DENCY LESS THAI	N 5.0.		
AMERIS V = 0.32 Ntingency coeffici Meda (Asymmetric)	N S	312	2	DEPENDENT.	0	0.03333 WITH 902	DEPENDENT.	_	
2000000 1000000	ENT (ASSM 0.20142 0.20142 0.24234 0.24234	E HUNN	0.0346	IFICANCE = 0.0729	12 DEPENDENT.	o -	0.04373 WITH 902		DEPENDENT.
MERS'S D (ASYMMET	() = ()	6699	WITH 012	DEPENDENT.	ENT.	0.24308 WITH 002	032 DEPENDENT.	ENT.	
MERS'S 0 (SYMMETR A = 0.32904 WITH ARSON'S R = 0.247	IC) = 0.19	CARC	PENT. E = 0.0503	. O a	□ 0.24787 WITH 902	DEPENDENT.			

ML 420-101 MONEAU FEBRATION DATE & 11/20/881		4 11/29/88	PAGE S
ມ *ຂ*		• •	* * * * * * * * * * * * * * * * * * *
903 MASCULIN FEMININ ROW 1.1 2.1 TOTAL			
1			
24.00 II 750.00			
29 4.4 3.			
TEE OF FREEDOM.	SIGNIFICANCE = 0.0385 SIGNIFICANCE = 0.0178		
£.	0.06250 WITH 903	DEPENDENT.	,
(ASYMMETRIC) = 0.09413 WITH Q12 DEPENDENT. (SYMMETRIC) = 0.09708 35477 SIGNIFICANCE = 0.0093 33975 SIGNIFICANCE = 0.0003	 	0.10022 WITH 903	DEPENDENT
~4	B 0.33992 WITH	003 DEPENDENT.	.NT.
• 🛏	DEPENDENT.		

* 0				DEPENDENT.	
11/29/88 PAGE 6				DEPENDENT. 0.00991 WITH 904	O4 DEPENDENT.
0 + A 6 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +			SIGNIFICANCE B 0.6338	= 0.0 WITH 004 Dependent. = 0	= 0.11462 WITH 904 ITH 304 DEPENDENT.
= 11/29/88) * * * C R O S S T A B U L A T I O N 0 * * * * * * * * * * * * * * * * * * *	S 21. TOTAL 22. 36.4 I 48.9	V VV 10	42.2 100.0 2658 WITH 1 DEGREE OF FREEDOM:	"MITH G12 DEPENDENT. ETGIC = 0.00974 WITH G12 TRIC) = 0.00983 SIGNIFICANCE = 0.2208 SIGNIFICANCE = 0.2208	747 700 700 700 700
PRCJET ML 420-101 FILE NOWAME (CREATION DATE * * * * * * * * * * * * * * * * * * *	COUNT 1 004 ROW PCT 120 ET MO 21 COL PCT 11NS 20.1 101 PCT 11NS 20.1 11	HHHHHHH WI 0401	RRECTED CHI SQUARE = 0.6	0.01 EM 1.00 CM 1.00 CM 1.0	MMA = 0.23200 = 0.1 MERS'S D (ASYMMETRIC) = 0.1 MERS'S D (SYMMETRIC) = 0.11 A = 0.11600 WITH 012 DA A = 0.11601 SIGNIFI

	10 1							
P & G	FAU CEGEP PAGE 1					DEPENDENT.		DEPENDENT.
11/29/88	Z+ Z+ Z+							500
	SY GOS NOMBRE SESSION NIVEAU CEGEP 4 + + + + + + + + + + + + + + + + + +				SIGNIFICANCE = 0.0838	B 0.05882 WITH 005	•	ENDENT. = -0.20447 WITH QOS 0.30361 WITH QOS DEPENDENT.
1/29/93) * CROSSTABULA	L ROW TOTAL	4 4 0 0 0 00		100.0	WITH 1 DEGREE OF FREEDOM.	151 H Q12 DEPENDENT. C) = 0 04806 urts 042	17 CANCE 0.0220	WITH 912 DEPENDENT. E 0.30361
TON DATE # 1	S CONE TO ET	202	1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200	37.8 62.28	926825	NT = 0.290 0.27273 WIT 0.17949 NT (ARWETER	O. 204 STAN	1C) = -0.31303 W C) = -0.30346 012 O.3036 0 SIGNIFICANCE
ML 420-10 Noname		1	HHHH	COLUMN TIT	CHI SQUARE CHI SQUARE 0.30360	201 COEMPIC S 2012 COEMPIC S 212 COEMPIC S 211 COEMPIC S	STAU CEFICIE	CASSACTED CONTROL OF STATE OF
PROJET FILE	*	912 0uI	NO2		N I I	22.2.C -000 -000		00000 00000 00000 00000 00000

 	* 4	11/29/88 PAGE	Ф * •
CRO CROSTABULATION OF LECTRAVAIL PARSEMAINE CRO HEURES DE TRAVAIL PAREMENTE CRO PAGE	HEURES DE	TRAVAIL PAR	SENAINE
•			
26.00 III			
O-MM -			
37.8 100.0 2.93373 WITH 1 DEGREE OF FREEDOM: SIGNI	SIGNIFICANCE = 0.1782		
23938 WITH 912 DEPENDENT. © 0.0 TRIC) © 0.0436 WITH 912 DEPENDENT. RIC) © 0.04536 WITH 912 DEPENDENT. IGNIFICANCE © 0.0510	.O WITH 906	DEPENDENT. 0.04636 WITH 906	
420 WITH 912 DEPENDENT. PENDENT. ANCE 0.0513 0.24661 WITH 906	9 -0.23913 WITH QO6 DEPENDENT.	906 DEPENDENT.	_

•									DEPENDENT.		
38 PAGE								DEPENDENT.	0.00138 WITH 907	DEPENDENT.	
11/29/88		ANT	1 2						0.001	400	
		THE STABLLATION OF THE TUDIANT					SIGNIFICANCE = 1.0000	0.0 WITH 907	DENT.	= -0.03360 WITH 907	7 DEPENDENT.
		T 1007 Y	; ; ;					Ħ	DEPENDENT.		WITH 90
		TABULA					E OF FREEDOM.	DEPENDENT.	WITH 912 .3977	DEPENDENT.	= 0.03906 WITH 907
	11/29/88)	S S O S O S O S O S O S O S O S O S O S	ET ROW 2.1	257 11 40 22 22 22 22 22 22 22 22 22 22 22 22 22	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	100.0	33		C) = 0.00110 WITH 912 IFICANCE = 0.3977	WITH 012	NDENT.
	CCREATION DATE = 1	UN MICRO	TIEL COMPL 1.1	 	44W	11 7	0.06372	0.03905 0.0 WITH 912	ENT	240°0- = (SIGNIFICAN
20-101		POSSEDER	G F	† 		COLUMN TOTAL	HI SQUARE B	TERES CONTRACTOR		YAMEI	
PROJET ML 420-101	FILE NONAME	* * * * * * * * * * * * * * * * * * * *	;	912 0UI	NO.		CORRECTED C	CONTINGENCY LAMBDA (ASY	AKENON FENCE FENCE FENCE FENCE FIL FIL SAT I THA SAT I THA SAT SAT SAT SAT SAT SAT SAT SA	SOMERS ON D	ETA BON 0.03

10	1 OF 1							DEPENDENT.			
PAGE	• • • • • • • • • • • • • • • • • • •						DEPENDENT.	0.01385 WITH 908	DEPENDENT.		
11/29/88	SESSION							0.01335	800		
	COURS PAR'S					E = 0.3752	WITH 908	a	0.13182 WITH 908	DEPENDENT.	
	AT 1 0 N 0 F BY 408					SIGNIFICANCE SIGNIFICANCE	0°0 ¤	DEPENDENT.	O "	WITH 408	
	4 1 2 B C L 8 B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					E OF FREEDOM.	DEPENDENT.	1927 1927	DEPENDENT.	= 0.13542 WITH 908	
	0 + 0 + 0 +	PLU ROW S.I TOTAL	7 47 50 11 47 6	25 25 11 25 - 4	100,0	WITH 1 DEGREE	34 912 DE	C) = 0.01330 WITH 912 IFICANCE = 0.1927	WITH 012	NDENT.	m
DATE = 1	* * * * * * * * * * * * * * * * * * *	NO I ON I	POW4	~8080 	16 16 16	8:37413	2000-134	AHUUN SHUUN SHUUN SK	26	IGNIFICAN	AVATIONS =
CREATI	POSSEDER	COUNT I 008 COUNT I CO			m		OEFFICIENT	GFFICIENCE OF THE OF TH	SYMPETATO	0.13558	MISSING OBSERV
ROJET ML		Ç	100	NON		RECTED T = RAW	MATINGENCAS	X X X X X X X X X X X X X X X X X X X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ARSON'S	YUMBER OF W

=		• • • • • • • • • • • • • • • • • • •							DEP END ENT.		
PAGE		* CROSSTABULATION OF ** * * * * * * * * * * * * * * * * *						DEPENDENT.	0.02558 WITH 909	DEPENDENT.	
11/29/88		ATIQUE						۵	0.0255	600	
_		URS INFORM					0.10 0.28 0.28 0.28 0.28 0.28	WITH 009	O	E -0.16403 WITH 009	DEPENDENT.
		55 + + + 60 a					SIGNIFICANCE = 0.3865 SIGNIFICANCE = 0.2348	0°0 u	DEPE4DENT.		
		U L A T T					OF FREEDOM. S	.•		DEPENDENT.	0.17712 WITH 909
		# * * * *					REE OF FR	DEPENDENT.	A 0.02289 WITH 912 (C) = 0.02416 GNIFICANCE = 0.1200 GNIFICANCE = 0.1200	DE	68
	11/29/88)	S 0 *	TOTAL		11 11 51.13	-ī 100.6	WITH 1 DEGREE	212	0.022 0.0241 1CANCE =	WITH 012	NDENT.
	DATE = 11/2	MICRO +	UN E				9.75984 W	0.17440 636 WITH 912	SSYNAME TAILO SSYNAME TAILO 12 METAILO 12 SIGNIT	17560	
	CCREATION D	SEDER UN M	I AUCUN		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ENT :	ENT. -0.17.0	201	217 717 H
ML 420-101	NONAME (* * * *	ROUCE TOOL PCT	-	2.	COLUMP TOTAL	CHIS	A 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S	0 ASY 2 C	
ROJET M	ILE N	* 012*	;	12 0UI	NON		RECTE	2 X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		ETTE EMB EMB EMB EMB EMB EMB EMB EMB EMB EM	1 6 2 4

PROJET ML 420-101 File Noname (-101 (CREATION DATE = 11/29/88)		11/29/88 PAGE	12
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	POSSEDER UN MICRO	N OF # # # # # # # # # # # # # # # # # #	LER ORDINATEUR	* * * *
-1080 -1000	010 0UI			• •
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Z O Z	244 600 600 600 600 600 600 600 600 600 6			
	148			
INIMUM EXPEC	CELL FREQUENCY = 2444 CELLS HAVE EXPECTED CELL FREQUENCY = 3.4044 WITH 1 DEGREE OF FREEDOM.	ELL FREQUENCY LESS THAN SIGNIFICANCE = 0.050	. 5.0.	
HI = 0.34 ONTINGENCY C AMBDA (ASYMM	FICIENT = 0.3	= 0.0 WITH 910	DEPENDENT.	
	FILT 10 14813 EFFICIENT (SYMMETRIC) = 0,11722 WITH 912 EFFICIENT (SYMMETRIC) = 0,15594 0.34578 SIGNIFICANCE = 0.0109 0.21728 SIGNIFICANCE = 0.0109	DEPENDENT.	0.23284 WITH 010	DEPENDENT.
CATANA SA CANDA SA CA	UDUUU SYMMETRIC) = 0.35700 WITH 912 DEPENDENT. SYMMETRIC) = 0.34578 WITH 910 G.34578 SIGNIFICANCE = 0.0100	= 0.21739 WITH 410	010 DEPENDENT.	

PROJET ML	PROJET ML 420-101 Frie noname (foration bate = 11/20/RR)	-	11/29/88 PAGE	13
2	POSSEDER UN AICRO	A PROGRAM	ACC + + + + + + + + + + + + + + + + + +	* * * 0F 1
	UNT I PET IOUI NON PET I 1.1 2.)			
912 0UI				
NO N	1 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	31-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
RRECTE	355	0:1319		
MATE ABOVE	NCY COEFICIENT = 0122	WITH 011	DEPENDENT.	
KENNER PROPERTY PARTY PA	NTTACENTY TO THE NATION OF THE	ta .	0.06173 WITH Q11	DEPENDENT.
MERS S	D (ASYMMETRIC) = 0.29493 WITH 012 DEPENDENT.	0.25296 WITH 911	911 DEPENDENT.	
ARSON-ON	27314 TTL 1 0.27314 WITH 911 SRR = 0.27314 WITH 911	DEPENDENT.		

Annexe D

Test t de Student pour les 18 sujets

11/29/88

PROJET ML 420-101	ML 420-101 Noname (Creation Date = 11/29/83)	- 11/29/83)	_			11/29/88	788 PAGE	•		
	` 1	•	1	- - - - -	1 1 1	† † † †	1 1 1	1 1	1	1
VARIABLE	REAN	STANDARD	STANDARD	+ (DIFFERENCE)) STANDARD DEVIATION	STANDARD	* CORR. PROB.	* VALUE	DEGREES OF FREEDOM	2-TAIL PROB.
PR01	COMPREHENSION VERBALE 01 18 44.3889 26.351 COMPREHENSION VERBALE 02	01 26.674 02 26.351	6.287	-11.111	16.974	4.001	0.795 0.000	-2.78	17	0.013
PR02	RAISONNEMENT 01 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	21.069	4.966 3.200	* -12.3889	13.048	3.075	0.800 0.000		17	0.001
PR03	SERIE LETTRE 50.2778 18	28.875	6.806	-18.0000	23.998	5.656	0.600 0.008		17	0.005
P 8 0 4	APTITUDE NUMERIQUE 01 18 47 4444 APTITUDE NUMERIQUE 02	2 2	5.498	-6.2778	18.85 858	4.45	0.635 0.005	-1.61	17	0.176
PR05	DIAGRAMME 0167.5556 18 80.7222 DIAGRAMME 02	13.120	3.480	* -13.1667	11.516	2.714	0.665 0.003	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17	0.000
PR06	TOTAL DU PRE-TEST 4 18 18 1944	16.615 16.486	3.916 3.886	-13.5556	7.928	1.869	0.885 0.000	-7.25	17	0.000

Annexe E

Test t de Student pour les 27 sujets

PAGE 11/29/88 PROJET ML 420-101 FILE NONAME (CREATION DATE = 11/29/88)

VARIABLE	NUMBER OF CASES MEAN	STANDARD	STANDARD	*(DIFFERENCE) STANDARD * MEAN DEVIATION	DEVIATION	STANDARD	+ CORR. PROB.	VALUE	T DEGREES OF 2-TAIL VALUE FREEDOM PROB.	2-TAIL PROB.
PR01 C0	MPREH 27 MPREH	LE 02 24.183	4.227	-8.222	16.109	3.100	0.760 0.000	-2.65	9 2	0.013
PR02 P002	RAISONNEHENT 01 27 27 49 444 RAISONNEMENT 02		3.191	-11.6296	18.878	3.633	0.340 0.083	-3.20	5 2 9	0.004
PR03	SERIE LETTRE 91 0370 27 SERIE LETTRE 02 6667	26.508	5.101 4.502	** -15.6296	22.643	4.358	0.594 0.001	-3.59	92	0.001
PR04	APTITUDE NUMERIQUE 01 27 36.0667 APTITUDE NUMERIQUE 02	01 22.030 02 18.083	4.240	-6.0370	15.411	. 996° 2	0.721 0.000	-2.04	56	0.052
PR05	DIAGRANNE 01 58.7037 27 DIAGRANNE 02 71.2593	18.220	3.507	-12.5556	9.411	1.811	0.861 0.000	-6.93	92	0.000
PR06	PRO6 TOTAL DU PRE-TEST 17.185 3.	17.185	3.307	-12.6667	9.576	1.843	0.831 0.000	-6.87	2 6	0.000

Annexe f

Plan de cours détaillé

Le langage algorithmique ses symboles et ses concepts

Durée: 3 rencontres (#1, #2, #3)

A. Objectifs terminaux et intermédiaires

Objectif *1 Définir les principaux concepts reliés au langage algorithmique

- 1. Définir le terme Algorithme
- 2. Donner un exemple d'algorithme
- 3. Donner la raison d'être d'un algorithme
- 4. Identifier les principaux outils utilisés pour représenter un algorithme.
- 5. Définir le terme ORDINOGRAMME
- 6. Reconnaître l'ordinogramme
- 7. Nommer les 5 opérations de base de l'ordinateur

Objectif*2 Identifier les symboles (conventions) utilisés en algorithmie.

- 1. Identifier les symboles de l'ordinogramme
- 2. Identifier les symboles de la méthode Warnier-Orr
- 3. identifier les symboles arithméthiques/logiques
- 4 Identifier une opération et ses implications
- 5 Expliquer l'opération reliée à chaque symbole

Objectif#3 Reconnaître les types de données de base

- 1. Nommer les types de données de base
- 2. Identifier les types de données de base

Objectif*4 Reconnaître les 6 étapes de la résolution d'un problème

B. Activités d'apprentissage

Exposés

Travail avec le dictionnaire

Travail d'identification des types de données

Travail de définition en groupe

Page 2	420-101	Logique	de programmation	Plan de cours

C. Evaluation

Rencontre #2 fin Examen formatif No. 1.1

#3 fin Examen sommatif No. 1

Vérification du dossier personnel

D. Travaux hors cours

Rencontre #1 Exercice de recherche de définitions, 1.1

#2 Préparation de l'examen sommatif No. 1

#3 Exercice 2.0 Lecture du prochain module

E. Médiagraphie

•CHASSE, George "Initiation à l'informatique", coll. SARP, Guérin

•Notes de cours module 1

Structures de contrôles et expressions

Durée: 4 rencontres (#4, #5, #6, #7)

A. Objectifs terminaux et intermédiaires

Objectif#5 - Distinguer les 5 grandes catégories d'instructions

Nommer les 5 grandes catégories d'instructions.

Catégorie d'instructions	Element manipule
1. Affectation	Expression
2. Entrée	Variable
3. Sortie	Expression
4. Alternative	Expression booléenne
5. Répétitive	Expression booléenne

Expression =Exp booléenne

- -Exp algébrique
- -Exp chaîne de caractères
- 2 Apparier un symbole avec sa catégorie d'instruction
- Nommer les éléments manipulés par les 5 catégories d'instruction.

Objectif*6 Différencier les catégories de structures de contrôle utilisées dans un algorithme.

- I dentifier les structures de contrôle utilisées dans un algorithme.
- 2. Nommer les 2 types de structures de boucles utilisées dans un algorithme.
- Nommer les 3 types de structures alternatives utilisées dans un algorithme.
- 4. Identifier les structures alternatives imbriquées
- 5 Identifier les structures répétitives imbriquées
- 6. Identifier les structures mixtes imbriquées

Objectif*7 Évaluer des expressions

- 1 Nommer les 3 sortes d'expressions
- 2. Reproduire la table de vérité
- 3. Identifier la priorité des opérateurs arithmétiques

Page 4	420-101 Logique de programmation	Plan de cours		
4.	Fractionner des expressions arithmétiques en	n sous-		
	expressions			
5.	Évaluer des expressions arithmétiques			
6	Transformer des expressions de la forme algé	brique à la forme		
	informatique			
7.				
8.	 7. Identifier la priorité des opérateurs logiques 8. Fractionner des expressions logiques en sous-expressions 			
9.	Évaluer des expressions logiques	0.1p. 000.0110		
10.	Identifier la priorité des opérateurs booléens			
11.	Fractionner des expression booléennes en sou			
12.	Évaluer des expressions booléennes	o expressions		

B. Activités d'apprentissage

Exposé
Exercices
Travail sur l'évaluation d'expressions
Exercices sur la reconnaissance des structures de contrôles
En équipe, inventer des exemples d'ordigramme et W-O

C. Evaluation

Rencontre	#5 début	Examen formatif No. 2.1
	#6 fin	Examen formatif No. 2.2
	#7 fin	Examen sommatif No 2

D. Travaux hors cours

kencontre:	#4	Exercice sur les structures 2.1
	#5	Exercice sur les expressions 2.2
	#6	Preparation de l'examen sommatif No. 2
	#7	Exercice 3.0 Lecture du prochain module

Déroulement des algorithmes

Durée : 6 rencontres (#8, #9, #10, #11, #12, #13)

A. Objectifs terminaux et intermédiaires

Objectif#8 Suivre le déroulement d'un algorithme

- Décrire le contenu d'une variable suite à un traitement algorithmique.
- 2. Décrire le contenu d'une variable suite à une opération d'écriture...
- 3. Décrire le contenu d'une variable suite à une opération de lecture.
- 4. Suivre des algorithmes utilisants des structures séquentielles.
- 5. Suivre des algorithmes utilisants des structures alternatives.
- 6. Suivre des algorithmes utilisants des structures répétitives.
- 7. Suivre des algorithmes utilisants des structures mixtes.
- 8. Suivre des algorithmes utilisants des structures alternatives imbriquées.
- 9. Suivre des algorithmes utilisants des structures répétitives imbriquées.
- 10. Suivre des algorithmes utilisants des structures mixtes imbriquées.
- 11. Écrire la trace d'un algorithme
- 12. Différencier COMPTEUR d'ACCUMULATEUR

B. Activités d'apprentissage

Exercices en classe

C. Evaluation

Rencontre	#9 fin	Examen formatif No. 3.1	
	#12 début	Examen formatif No. 3.2	
	#13 fin	Examen sommatif No. 3	
		Vérification du dossier personne	1

11	488484	• • •	
111)000 E	<i>x</i> 20 101	Logique de programmation	Plan de cours
HEARE O	420-101	LONGUE GE DEONEADHNAIDH	PIAN OP COURS
Page 6		poblidae as brobrammanon	I THIT AC CORL

D. Travaux hors cours

Rencontre: #8 Devoir/lecture 3.1

#9 Devoir/lecture 3.2

#10 Devoir/lecture 3.3

#11 Devoir/lecture 3.4

#12 Préparation de l'examen sommatif No. 3

#13 Exercice 4.0 Lecture du prochain module

E. Médiagraphie

LAURENT J.P., <u>Initiation à l'analyse et à la programmation</u>, Dunod,1982, 99 p.

BIONDI J., CLAVEL G., <u>Introduction à la programmation. tome 1.</u>
Algorithme et langages, 3ième éditon Masson, 1987, (QA76.6.B56 1987 V.1)

Diagramme modulaire

Durée: 3 rencontres (#14, #15, #16)

A. Objectifs terminaux et intermédiaires

Objectif#9 Suivre un algorithme utilisant un diagramme modulaire.

- 1. Définir le terme FICHIER (de lecture et d'écriture)
- Définir le terme VALIDER
- Définir le terme PROCEDURE
- 4. Définir le terme PARAMETRE
- 5. Différencier paramètre donnée de paramètre résultat
- 6. Définir en ses termes le concept de variable globale
- 7. Définir en ses termes le concept de variable locale
- 8. Reconnaître un diagramme modulaire
- 9. Reconnaître les principes de l'approche modulaire
- 10. Reconnaître la méthode descendante
- 11. Faire la trace d'un algorithme modulaire

B. Évaluation

Rencontre: #14 Test formatif No. 4.1 à la maison (devoir)

#15 Test formatif No. 4.2 à la maison (devoir)

#16 fin Examen sommatif No. 4

C. Travaux hors cours

Rencontre: #15 Préparation de l'examen sommatif No. 4

#16 Exercice 5.0 Lecture du prochain module

Traduction en Pascal

Durée : 4 rencontres

(#17, #18, #19, #20)

A. Objectifs terminaux et intermédiaires

Objectif*10 Traduire un algorithme dans le langage de programmation Pascal.

- 1. Nommer les énoncés de base de Pascal.
- 2. Associer les éléments algorithmiques avec les énoncés Pascal.
- 3. Utiliser les énoncés de base de Pascal dans la traduction d'un algorithme.

B. Evaluation

Rencontre:

#18 début Examen formatif No. 5.1 #19 f in Examen formatif No. 5.2

#20 fin Examen sommatif No. 5

C. Travaux hors cours

Rencontre:

#17 Devoir 5.1

#18 Devoir 5.2

#19 Préparation de l'examen sommatif No. 5

#20 Exercice 6.0 Lecture du prochain module

Remise du dossier personnel

Développement d'un algorithme

Durée: 10 rencontres (#21 à #30)

A. Objectif terminaux et intermédiaires

Objectif*11 À partir d'un problème, développer un algorithme de façon personnelle et le traduire dans un langage donné.

- 1. Développer un module en ses diverses traitements, du plus simple au plus complexe.
- 2. Découper un problème en ses divers modules.
- 3. Corriger des erreurs de programmation.

Objectif*12 Vérifier sur ordinateur la logique d'un algorithme.

B. Evaluation

Rencontre: #24 f in Examen formatif No. 6.1

#28 f in Examen formatif No. 6.2 #30 fin Examen sommatif No. 6

C. Travaux hors cours

Rencontre: #21 Devoir + laboratoire 6.1

#22 Devoir + laboratoire 6.2

#23 Devoir + laboratoire 6.3

#24 Programme 6.4

#25 Programme 6.5

#26 Programme 6.6

#27 Programme 6.7

#28 Préparation de l'examen sommatif No. 6

#29 Préparation de l'examen sommatif No. 6

Annexe G

Plan de cours général

THEME	OBJECTIFS TERMINAUX	COURS	DATE	ÉVALUATION	TRAVAUX HORS COURS
Le langage algorithmique	1-Définir les principaux concepts reliés				
ses symboles et ses	au langage algorithmique.				
concepts	2- Identifier les symboles (conventions)				
	utilisés en algorithmie.				
	3- Reconnaître les types de données de			<u> </u>	
	base	<u> </u>			
		#1			Exercices de recherche 1.1
		*2		Examen formatif 1.1 (fin)	Préparer examen sommatif #1
		*3		Examen sommatif #1 (fin)	Exercice 2.0 sur prochain module

MODULE 2

Structures de contrôles,	4- Distinguer les 5 grandes catégories			
opérations et types de	d'instructions.			
données	5- Différencier les catégories de			
	structures de contrôle utilisées dans			
	un algorithme.			
	6- Différencier les catégories de structu-			
	res de contrôles utilisées dans un			
	algorithme			
	7- Evaluer des expressions.	*4		Exercice sur les structures 2.1
		* 5	Examen formatif 2.1 (début)	Exercice sur les expressions 2.2
		* 6	Examen formatif 2.2 (fin)	Préparer examen sommatif #2
		* 7	Examen sommatif #2 (fin)	Exercice 3.0 sur prochain module

MODULE 3

Déroulement des	8- Suivre le déroulement d'un			
algorithmes.	algorithme	* 8		Devoir/lecture 3.1
		#9	Examen formatif 3.1 (fin)	Devoir/lecture 3.2
		*10		Devoir/lecture 3.3
		#11		Devoir/lecture 3.4
		*12	Examen formatif 3.2 (début)	Préparer examen sommatif #3
		#13	Examen sommatif #3 (fin)	Exercice 4.0 sur prochain module
			Remise du dossier personnel	

MODULE 4

THEME	OBJECTIFS TERMINAUX	COURS	DATE	ÉVALUATION	TRAVAUX HORS COURS
Diagramme modulaire	9- Suivre un algorithme utilisant un				
	diagramme modulaire.				
		*14		Test formatif 4.1 (maison)	
		* 15		Test formatif 4.2 (maison)	Préparer examen sommatif #4
		* 16		Examen sommatif *4 (fin)	Exercice 5.0 sur prochain module

MODULE 5

Traduction en Pascal	10- Traduire un algorithme dans le			
	langage de programmation Pascal.			
		* 17		Devoir 5.1
		#18	Examen formatif 5.1 (début)	Devoir 5.2
		*19	Examen formatif 5.2 (fin)	Préparation de examen sommatif *5
		* 20	Examen sommatif #5	Exercice 6.0 sur prochain module
			Remise du dossier personnel	

MODULE 6

Développement d'un	11- A partir d'un problème, développper			
algorithme.	un algorithme de façon personnelle			
	et le traduire dans un langage donné.			
	12- Vérifier sur ordinateur la logique			
	d'un algorithme.			
		*21		Devoir et laboratoire 6.1
		*22		Devoir et laboratoire 6.2
		*23		Devoir et laboratoire 6.3
		*24	Examen formatif 6.	(fin) Programme 6.4
<u></u>		* 25		Programme 6.5
		* 26		Programme 6.6
		#27		Programme 6.7
		* 28	Examen formatif 6.2	(fin) Préparation de examen sommatif #6
		* 29		Préparation de examen sommatif *6
		* 30	Examen sommatif *	6 (fin)

Annexe H

Dossier personnel

DOSSIER PERSONNEL

Ce qui suit explique ce qu'est un dossier personnel.

Ce dossier vous servira à conserver et à ordonner tous les documents qui vous seront remis au cours de la session.

Voici ce qu'il devra contenir.

- 1- Une page vous identifiant et identifiant le dossier. Votre nom, nom du cours, nom du professeur...
- 2- Le plan général du cours fournit par le professeur.
- 3- Pour chaque thème:
 - a- Le plan détaillé du module fournit par le professeur.
 - b- Les notes de cours qui vous auront été remises et celles que vous aurez prises personnellement en classe.
 - c- Les activités d'apprentissages. Exercices et travaux faits en classe. Les énoncés des exercices à faire.
 - d- Les tests formatifs corrigés.
 - e- Les travaux hors cours.

Il est très important que ce dossier soit toujours mis-à-jour et bien organisé car, n'oubliez pas que six (6) thèmes seront abordés au cours de la session, que vous passerez vingt-deux (22) examens formatifs, six (6) examens sommatifs, qu'il y aura vingt-et-un (21) devoirs à remettre.

Ce dossier prendra la forme de un ou plusieurs cartables de format 8.5×11 .

Le professeur examinera régulièrement ce dossier personnel.

Annexe I

Information personnelle

INFORMATION CONFIDENTIELLE

Nom de 1'é	tudiant(e):			
Cours 420	-101 Groupe :			
Est-ce vot	re première session dans un cége	ep ?		□ NON
Si non ,	écrivez le nom du cégep fréquen	té avant :		• • • • • • • • • • •
	écrivez dans quelle concentration			
	Combien de sessions ?			
Avez-vous	un emploi en dehors des heures d	de cours ?		□ NON
	combien d'heures par semaine ?.			
	Écrivez votre horaire de travail,			
•	prévoyez vous avoir un emploi de	urant la session ?		□ NON
	e horaire, vous êtes inscrit à con			
	tal de combien d'heures de cours			
Savez-vou	s dactylographier? Pas du tou	•	ennemer	10
.		, □ oui très bien		
	s concernant vos antécédants			
	déjà suivi un ou plusieurs cours			
Si oui,	où avez-vous suivi ces cours :			
	Nombre de cours suivis :			
	Noms des cours :		• • • • • • • • • • • • • • • • • • • •	
Possèdez-	vous une formation d'opérateur d	'ordinateur ?		□ NON
Avez -vous	s déjà utilise un ordinateur ?			□ NON
Avez -vous	s déjà programmé un ordinateur (?		
	vous un ordinateur ?			□ NON
Si oui,	quel modèle ?			
	nombre de K de mémoire central	le :		
Avez -vous	s déjà programmé en BASIC :			□ NON
	s déjà programmé en LOGO :			□ NON
	s déjà programmé en Pascal :			
	s déjà programmé en d'autres lan	gages:		□ NON
Si oui a	vec lesquels ?			

 .
<u></u> -

Annexe I

Protocole d'expérimentation

PROTOCOLE D'EXPÉRIMENTATION

1. Numero du groupe:	
2. Numéro de la rencontre:	
3. Date (JJ/NH/AA):/	
4. Noms des absents:	
	,
5. Objectif terminal:	_
6. Objectif intermédiaire:	_
7. Y a-t-il eu un premier test formatif? OUI NON	
(a) Combien ant obtenu 80% ou plus?	
(b) Combien n'ont pas obtenu 80%?	
(c) Combien ont suivi l'activité corrective?	
(d) Genre d'activité corrective:	_
8. Y a-t-il eu un deuxième test formatif? 🗆 OUI 🗅 NON	
(a) Combien ont obtenu 80% ou plus?	

Logique de programmation

	(Р)	Combien n'ont pas obtenu 80%?
	(c)	Combien ont suivi l'activité corrective?
	(d)	Genre d'activité corrective:
9.	Y a-t-i	il eu un examen sommatif? 🗆 GUI 🗅 NON
	(a)	Hayenne?
	(P)	Autres commentaires/analyses:
10.		il eu une revision de l'examen? 🖾 OUI 🖾 NON Commentaires:
	_	
ıi.	Activi	té d'apprentissage:
12.	Avez-v	vous repris un devoir ou un autre travail hors-cours? □ OUI □ NON
	(<u>a</u>)	Combien 1°ont remis?
	Ф)	Combien l'ont réussi?
13.	Consul	tation individuelle avec
	(F)	
		•••••••••••••••••••••••
14.		remarques:

Annexe K

flebe étudiant

FICHE ETUDIANT

Identification Nom-etudiant: Code-identification: Groupe: Nom-professeur: Resultats aux tests d'aptitudes. . Compréhension Raisonnement . Série de Aptitude . Diagramme . verbale lettres . numérique sept 87 . dec 87 . Participation . Présence . Remise . Formatif . Sommatif . Activité . Activité #cours/date . devoir # . # . # . correct . enrichis . . 🖘 3 4 ਤ 6 . -8 9

. 10

Annexe L

Résultats aux tests

Pop	Q	Pr	Pré-test	(rang	(rang cantile	æ		Pos	Post-test	(rang	rang centile	e)		Résu	Itats &	SUX 69	amen	IS SOM	Résultats aux examens sommatifs	Total	Total
. Š	~~	Verbale Raison	i	lettre	Numé	Diag	Total V	Verbale Raison	Raison	lettre	Numé	Diag	Total	181	\$2	83	S 4	S 5	S 6	Adm	rech
-	I	_	44	65	10	54	22	91	54	91	10	92	ĺ			49	8	82	72	79	2
		20	54	52	4		38	38	67	65	31	92			93	88	8	72	98	91	9
		47	44	29	56	29	22	22	20	92	5	63	63			6 4	82	78	9	20	2
~		0	0	0	0	0	0	0	0	0	0	0	J		93	22	80	73	17	9	9
		^	44	71	26	29	20	0	0	0	0	0	J	88		58				31	
		5 6	73	86	67	78	2	20	77	96	39	86	2	95		86	100	92	92	94	94
	<u></u>	0	63	71	45	69	22	13	29	98	5	86	2	8	52	92	80	93	93	86	86
	10	67	32	92	31	29	29	22	54	93	72	92	2			65	82	2	8	82	82
. 17	_	0	0	0	0	0	0	2	32	52	0	43	22			82	95	73	8	78	78
	10	16	63	90	23	86	63	29	20	96	45	66	8		88	92	8	6	8	9	9
	10	22	44	21	31	26	44	67	8	92	39	29	55	_		2	80	2	75	77	77
	10	-	2	65	23	54	22	M	4	30	16	52	25	<u> </u>		9	80	71	99	72	72
	45	20	2	65	23	29	44	50	20	8	62	89	99	98	8	82	8	68	83	85	85
	10	M	26	2	23	17	ល	7	44	=	26	45		00 100	88	97	95	86	97	94	94
	10	38	44	86	16	92	29	16	44	90	39	80		95	8	92	8	83	86	89	89
		78	63	9	31	72	99	78	29	90	31	61	99		98	78	82	77	100	8	8
		78	44	29	7	80	63	78	44	71	9	89	99	98	g	97	90	90	88	92	92
	45	13	26	38	10	86	20	10	18	59	10	86	50		88	55	100	92	90	84	84

CODE	Pop	Pré-	test	(rang	centile	2)		Po	st-test	(rang	centil	e)		Résu	Itats :	aux ex	camer	is som	matifs	Total	Total
		Verbale Rai	son	lettre	Numé	Diag	Tota1	Verbale l	Raison	lettre	Numé	Diag	Total	\$ 1	S 2	S 3	S 4	\$5	\$6	Adm	rech
101	69	26	70	71	62	80	66	0	0	0	0	0	0	98	94	85	88	76		58	
102	69	0	0	0	0	0	0	74	26	0	23	54	38	100	95	100	90	87	98	96	96
103	45	4	54	15	10	47	25	2	54	15	10	63	32	93	85	69	70	71	34	62	62
104	45	13	50	90	16	78	59	47	59	86	23	92	66	100	95	100	100	82	96	96	
106	45	26	10	38	72	34	32	47	50	45	51	57	50	98	89	90	98	62	89	87	87
107	69	7	18	38	16	13	11	0	0	0	0	0	0	93	75	63	92	79		52	
108	69	7	10	45	16	52	25	0	0	0	0	0	0	93	38	72	85			37	
109	69	67	63	59	62	72	66	0	0	0	0	0	0	95	98	95	94			51	
110	69	0	0	0	0	0	0	0	0	0	0	0	0	95	95	97	93	81		62	
111	69	0	0	0	0	0		59	50	52	51	63	59	100	79	97	98	88	100	95	95
113	69	2	18	59	39	34	18	0	0	0	0	0	0	95	54	85	84	40		47	
114	45	7	35	76	23	80	55	26	67	86	23	78	63	100	98	100	100	97	97	98	98
115	69	92	84	38	76	76	84	0	0	0	0	0	0	100	90	85	70	97	59	79	79
116	45	70	35	71	39	78	66	59	50	86	51	80	70	100	98	97	92	97	97	97	97
1117	45	32	70	93	39	72	66	67	81	99	56	89	88	100	95	97	100	94	96	97	97
118	45	13	4	59	10	54	32	55	26	76	16	61	55	88	90	92	99	79	93	91	91
119	45	10	54	59	45	76	55	32	63	71	62	86	66	98	99	100	93	91	95	96	96
121	69	1	10	59	2	45	11	0	0	0	0	0	0	98	64	64	86	76		50	
122	45	59	97	86	76	99	90	85	99	86	30	99	95	98	100	100	100	99	98	99	99

Verbale Raison lettre Numé Diag Post-test (rang centile) Post-test (rang centile) Post-test (rang centile) Post-test (rang centile) Résultats aux examens sommatifs Total Total Total Sur lettre Numé Diag 1 ST 87 55 56 40m replement sommatification lettre Numé Diag 1 ST 87 55 56 76 98 90 98 100 97 94 96 95 91 96 97 73 100 96 95 91 96 95 91 96 95 91 96 95 91 96 95 91 97 94 96 95 91 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 91 97 94 96 95 97 94 96 95 97 94 96 95 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97																					
Pré-test (rang centile)	Total	rech	96	9	29	92	79	87	9	82		80		86	8	66		62	61	96	82
Pré-test (rang centile) Post-test (rang centile) Post-test (rang centile) Post-test (rang centile) Résultats aux examens Verbale Raison lettre Numé Diag Total S	Total	Adm	96	9	67	92	79	87	9	85	37	8	46	86	8	66	46	62	61	96	82
Pré-test (rang centile) Post-test (rang centile) Post-test (rang centile) Post-test (rang centile) Résultats aux examens Verbale Raison lettre Numé Diag Total S	natifs	S 6	94	95	42	96	92	78	38	92		26		98	92	00		4	64	97	91
Pré-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total 13 8 26 11 51 59 44 47 63 81 56 80 70 26 35 45 31 34 32 26 59 71 31 57 50 20 35 81 45 34 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s somn		26	96	92	94	83	90	65	93	ស	77		22	87	96	69	65	30	87	2
Pré-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total 13 8 26 11 51 59 44 47 63 81 56 80 70 26 35 45 31 34 32 26 59 71 31 57 50 20 35 81 45 34 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	amen	S 4	100	<u>8</u>	78	<u>0</u>	73	9	92	6	35	22	88	<u>8</u>	92	<u>0</u>	4	2	20	94	8
Pré-test (rang centile) Post-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Verbale Raison lettre Numé Diag Total Verbale Raison lettre Numé Diag Total 13 8 26 47 70 97 31 92 76 38 26 11 51 59 44 47 63 81 56 80 70 26 55 72 78 70 42 73 81 72 89 76 50 72 78 70 42 73 81 72 89 76 50 72 78 70 42 73 81 72 89 76 70 65 72 78 70 42 73 81 72 89 76 70 65 72 78 70 96 65 70 76 39 80 63 70 70 70 70 70 70 70 70 70 70 70 70 70	Sux ex	53	98	73	75	73	2	82	63	63	65	72	82	65	93	97	65	27	29	001	68
Pré-test (rang centile) Post-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Verbale Raison lettre Numé Diag Total Verbale Raison lettre Numé Diag Total 13 8 26 47 70 97 31 92 76 38 26 11 51 59 44 47 63 81 56 80 70 26 55 72 78 70 42 73 81 72 89 76 50 72 78 70 42 73 81 72 89 76 50 72 78 70 42 73 81 72 89 76 70 65 72 78 70 42 73 81 72 89 76 70 65 72 78 70 96 65 70 76 39 80 63 70 70 70 70 70 70 70 70 70 70 70 70 70	tats	\$2	90	93	80	98	85	93	68	95	80	73	8	85	80	00	80	83	65	93	83
Pré-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Merbale Raison lettre Numé Diag 13 77 81 51 80 66 47 70 97 31 92 13 77 81 51 80 66 47 70 97 31 92 26 35 45 31 34 32 26 59 71 31 57 80 20 0	Résul	\$ 1	98	00	98	98	8	001	8	78	93	75	85	95	8	000	93	93	83	86	88
Pré-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Verbale Raison lettre Numé Diag 13 77 81 51 80 66 47 70 97 31 92 13 77 81 51 80 66 47 70 97 31 92 26 35 26 11 51 59 44 47 63 81 56 80 26 35 45 31 34 32 26 59 71 72 89 20 35 31 45 34 38 0 <td< td=""><td></td><td>[ota]</td><td>92</td><td>70</td><td>20</td><td>92</td><td>0</td><td>63</td><td>99</td><td>20</td><td>0</td><td>92</td><td>0</td><td>92</td><td>23</td><td>29</td><td>0</td><td>0</td><td>38</td><td>38</td><td>90</td></td<>		[ota]	92	70	20	92	0	63	99	20	0	92	0	92	23	29	0	0	38	38	90
Pré-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Arrbale Raison lettre Numé Diag Total Arrbale Raison lettre Numé 13	<u> </u>		92	8	22	83	0	80	69	29	0	83	0	92	80	8	0	0	43	26	66
Pré-test (rang centile) Post-test (rang centile) Post-test (rang centile) Verbale Raison lettre Numé Diag Total Verbale Raison lel 13 77 81 51 80 66 47 70 38 26 11 51 59 44 47 63 26 35 45 31 34 32 26 59 26 35 45 31 34 32 26 59 20 35 45 31 42 73 50 35 45 36 0 0 50 35 31 45 44 82 63 50 35 30 4 57 44 82 63 10 35 71 10 52 32 20 26 10 35 71 10 52 38 70 10 10 50 11 16 69 38 0 0 10 50 11 16 69 38 10	centile		31	26	31	72	0	39	39	39	0	6 7	0	62	39	29	0	0	23	4	26
Pré-test (rang centile) Post-test Verbale Raison lettre Numé Diag Total Verbale Raison 13 77 81 51 80 66 47 70 38 26 11 51 80 66 47 70 38 26 11 51 59 44 47 63 26 35 31 34 32 26 59 52 35 31 34 32 26 59 50 35 31 45 34 38 0 0 50 35 31 45 34 38 0 0 59 35 30 4 57 44 82 63 10 35 71 10 52 32 20 26 10 35 74 30 16 63 38 70 10 50 11 16 63 38 7	(rang		26	81	71	8	0	92	71	65	0	96	0	92	71	15	0	0	92	38	97
Pré-test (rang centile) Verbale Raison lettre Numé Diag Total Verba 13 77 81 51 80 66 4 38 26 11 51 80 66 4 4 26 35 45 31 34 32 3 3 3 3 2 3 3 2 3	t-test		20	63	29	73	0	29	63	5 6	0	2	0	29	4	73	0	0	5 6	35	77
Pré-test (rang centile) Verbale Raison lettre Numé Diag Total	Pos	erbale R	47	47	56	42	0	50	82	50	0	38	0	25	91	91	0	0	45	42	85
Pré-test (rang centile Verbale Raison lettre Numé 13 77 81 51 51 26 35 45 31 45 10 35 70 65 72 20 35 81 45 10 35 71 10 35 71 10 50 11 16 59 54 59 56 35 45 16 72 35 45 16 78 54 90 62 35 54 59 56 35 75 75 75 75 75 75 75 75 75 75 75 75 75		otal	99	44	32	20	38	38	44	32	38	52	38	23	22	44	=	22	44	22	92
Pré-test (rang centile Verbale Raison lettre Numé 13 77 81 51 51 26 35 45 31 45 10 35 70 65 72 20 35 81 45 10 35 71 10 35 71 10 50 11 16 59 54 59 56 35 45 16 72 35 45 16 78 54 90 62 35 54 59 56 35 75 75 75 75 75 75 75 75 75 75 75 75 75) iag	80	23	34	78	34	63	23	25	63	69	69	29	22	22	5 6	6	4	47	72
Verbal 25.9.2.5.1.2.5.2.5.2.3.5.2.5.2.5.2.5.2.5.2.5.2.5.2	entile)	Jumé (51	51	31	72	45	31	4	0	16	39	16	26	3	92	91	9	23	9	62
Verbal 25.9.2.5.1.2.5.2.5.2.3.5.2.5.2.5.2.5.2.5.2.5.2.5.2	(rang c		81	Ξ	₹	65	81	=	30	71	30	95	=	29	81	5	∞	\$	92	ត	90
Verbal 25.9.2.5.1.2.5.2.5.2.3.5.2.5.2.5.2.5.2.5.2.5.2.5.2	é-test	-	27	5 6	35	2	35	54	35	35	4	56	20	54	54	29	5 6	32	4	56	54
	ت	erbale R	13	38	56	25	50	13	26	2	20	<u> </u>	2	29	32	4	20	7	42	38	78
88288288288888888888888888888888888888	Pop	>	45	45	45	45	69	45	45	45	69	45	69	45	45	\$	69	69	45	45	45
	SOE		8	21	8	22	છ	8	22	88	&	ଞ	3	83	B	ቖ	ĸ	88	31	88	83

Verbale Raison lettre Numé Diag Total Arbale Raison	COE Pop	Pop	Pré-test	est (rar	(rang centile)	ile)		-	Post-test	Ξ.	(rang c	(rang centile)	_	_	Résult	tats au	JX eX	iltats aux examens somr	SOM	matifs	Total	Total
45 52 26 45 39 54 46 21 39 59 45 52 44 93 23 76 63 52 54 86 23 83 45 2 26 30 2 21 5 35 38 16 52 45 55 18 38 23 56 44 59 59 81 39 74 45 52 35 52 76 57 55 74 54 86 39 63 69 4 0 21 45 72 38 0		•	Verbale Rais				3g Tota	6	ale Rais	<u></u>	ettre h	lumé () iag	Total	5 1	\$2	53	54	55	S 6	Adm	rech
45 52 44 93 23 76 63 52 54 86 23 83 69 10 44 59 23 40 32 0 0 <td>2</td> <td>45</td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td></td> <td></td> <td>54</td> <td>21</td> <td>39</td> <td>29</td> <td>22</td> <td></td> <td>78</td> <td></td> <td>64</td> <td>72</td> <td>36</td> <td>67</td> <td>67</td>	2	45					ł			54	21	39	29	22		78		64	72	36	67	67
69 10 44 59 23 40 32 0<	202	45								54	86	23	83	99		86	001	90	86	94	96	96
45 2 26 30 2 21 5 35 38 16 52 45 55 18 38 23 56 44 59 59 81 39 74 45 52 35 76 57 55 74 54 86 39 63 69 4 0 21 45 72 38 0	202	69								0	0	0	0	0		65					7	
45 55 18 38 23 56 44 59 59 81 39 74 45 52 35 52 76 57 55 74 54 86 39 63 69 4 0 21 45 72 38 0	902	45								35	38	9	25	22		8		8	64	44	70	2
45 52 35 52 76 57 55 74 54 86 39 63 69 4 0 21 45 72 38 0	202	45								29	8	39	74	99		93		95	74	95	92	92
69 32 35 11 4 40 18 0 </td <td>603</td> <td>45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>54</td> <td>86</td> <td>39</td> <td>63</td> <td>99</td> <td></td> <td>6</td> <td></td> <td>73</td> <td>62</td> <td>92</td> <td>85</td> <td>82</td>	603	45								54	86	39	63	99		6		73	62	92	85	82
69 4 0 21 45 72 38 0 <td>0</td> <td>69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>22</td> <td></td>	0	69								0	0	0	0	0		33					22	
69 0 </td <td>12</td> <td>69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>93</td> <td></td> <td>8</td> <td>35</td> <td></td> <td>62</td> <td></td>	12	69								0	0	0	0	0		93		8	35		62	
45 38 67 21 67 54 50 26 73 59 62 65 5 69 38 50 86 72 69 63 0 0 0 0 0 0 45 38 35 15 67 63 50 74 59 86 62 80 7 69 13 4 8 39 17 5 0 0 0 0 0	5	69			0	0				0	0	0	0	0		00		87	92	92	95	95
69 38 50 86 72 69 63 0 0 0 0 0 0 45 38 35 15 67 63 50 74 59 86 62 80 76 69 13 4 8 39 17 5 0 0 0 0 0	913	45								73	29	62	65	23		92	_	9	82	9	94	94
45 38 35 15 67 63 50 74 59 86 62 80 76 69 13 4 8 39 17 5 0 0 0 0 0	713	69								0	0	0	0	0		83		22		51	28	
69 13 4 8 39 17 5 0 0 0 0 0	8	45								29	86	62	80	9/	8	92	26	90	84	92	93	93
	61	69	13	4	8					0	0	0	0	0		43		20	54	2	64	64

-

Annexe M

Données brutes sur la description des sujets

Données brutes sur la description des sujets

CODE	Popu	Test	apt	Som	AGE	SEXE	GR	SES	STAT	HRS	STAT	CRS	NB	EXP	EXP	A UN
étud	cat	Pré	Post	tous				COLL	EMP	Tra	ETUD	SSion	INF	MAN	PROG	MICRO
1	45	0	0	0	17	F	2	0	\$	0	C	7	1	oui	oui	non
2	45	0	0	0	18	Υ	2	2	Φ	18	C	7	2	oui	oui	oui
3	45	0	0	0	16	F	2	0	S	0	C	7	1	oui	oui	non
4	69	N	N	0		F	2									
5	69	0	N	N		M	2	0	C	36	C	4	1	oui	oui	nori
6	45	0	0	0	22	M	2	5	P	30	C	4	5	oui	oui	oui
7	45	0	0	0	18	М	2	0	P	16	C	7	3	oui	oui	oui
8	45	0	0	0	16	M	2	0	Ρ		C	7	2	oui	oui	cui
9	69	Ν	0	0	19	M	2	2	\$	0	C	7	0	oui	oui	oui
10	45	0	0	0	19	M	2	4	Р	20	C		3	cui	oui	oui
11	45	0	0	0	21	М	2	0	S	0	C		0	non	non	non
12	45	0	0	0	19	М	2	1	\$	0	C	7	2	oui	oui	oui
13	45	0	0	0	17	M	2	0	\$	0	C	6	1	oui	oui	non
14	45	0	0	0	20	F	2	4	S	0	Р	3	1	oui	oui	non
16	45	0	0	0	17	F	2	0	\$	0	C	7	1	oui	oui	non
17	45	0	0	0	20	M	2	6	S	0	P	3	2	oui	oui	oui
18	45	0	0	0_	22	F	2	4	Р	30	C	4	0	oui	non	oui
19	45	0	0	0	20	M	2	4	Р	16	С	5	1	oui	oui	non
20	45	0	0	0	21	M	1	8	Р	21	C	4	0	oui	non	oui
21	45	0	0	0	23	M	1	0	\$	0	C	7	3	oui	oui	non
22	45	0	0	0	17	F	1	0	S	0	C	7	0	non	non	non
24	45	0	0	0	18	F	1	2	Р	15	C	4	2	oui	oui	non
25	69	0	N	0	17	M	1	0	\$	0	C	6	1	oui	non	oui
26	45	0	0	0	17	M	1	0	Ρ	13	С	7	0	oui	oui	oui
27	45	0	0	0	19	M	1	4	Ρ	16	С	4	0	oui	non	oui
28	45	0	0	0	19	F	1	2	\$	0	С		2	oui	oui	oui
29	69	0	N	N	17	M	1	0	Ρ	16	C	7	1	oui	oui	oui
30	45	0	0	0	19	М	1	0	S	0	C	7	1	oui	oui	oui
31	69	0	N	N	18	М	1	0	Р	18	С		3	oui	oui	oui
32	45		0	0	19	M	1	4	Р	16	C	5	1	oui	oui	oui
33	45	0	0	0_	17	F	1	0	Р	12	С	7	1	cui	oui	non
34	45	0	0	0	25	М	1	4			С	6	0	oui	oui	oui
35	69	0	N	N	37	F	1	1	S	0	C	4	0	non	non	oui
36	69	0	N	0	20	F	_						寸			
37	45	0	0	0	16	М	1	0	Р	24	С	7	0	oui	non	non

Données brutes sur la description des sujets

CODE	Popu	Test	apt	Som	AGE	SEXE	GR	SES	STAT	HRS	STAT	CRS	NB	EXP	EXP	A UN
étud	cat	Pré	Post	tous				COLL	EMP	Tra	ETUD	SSion	INF	MAN	PROG	MICRO
38	45	0	0	0	17	M	1	0	Р	16	С	7	1	oui	oui	oui
39	45	0	0	0	19	Μ	1	2	\$	0	С	7	1	oui	oui	oui
101	69	0	N	N	26	M	EA	6	C		Р	-	4	oui	oui	oui
102	69	N	0	0	36	Μ	EΑ									
103	45	0	ο	0	20	M	EA	2	\$	0	Р	2	1	oui	oui	non
104	45	0	0	0	19	F	EA	2	С		Р	1	4	oui	oui	oui
106	45	0	0	0	26	M	EA	8	C	40	Ρ	1	0	ทดก	non	non
107	69	0	N	N	22	F	EA	0	С	35	Р	1	0	oui	non	non
108	69	0	N	N	24	M	EA	0	С	40	Ρ	1	1	oui	oui	oui
109	69	0	N	N	26	M	EA	1	C		Р	1	0	oui	oui	oui
110	69	N	N	N		F										
111	69	N	0	0	24	М	EA									
113	69	0	N	N_	26	M	EA	0	C		ρ	1	0	oui	oui	oui
114	45	0	0	0	27	F	EA	1	C		Р	1	2	oui	oui_	non
115	69	0	N	0	51	M	EA	4	С		ρ	3	3	oui	oui	out
116	45	0	0	0	20	F	EA	0	С		Р	1	0	oui	non	non
117	45	0	0	0	28	F	ΕA	2	S		Р	_1_	2	oui	oui	oui
118	45	0	0	0	24	M	EA	2	С		Ρ	1	3	oui	oui	non
119	45	0	0	0	26	M	EA	3	С		Ρ	1	2	oui	oui	<u>oui</u>
121	69	0	N	N	22	F	EA	0	С	40	Р	1	0	oui	non	non
122	45	0	0	0	26	Σ	EA	4	С	38	Р	1	1	oui	oui	oui
201	45	0	0	0	30	M	ispi	6	S	0	С		5	out	oui	non
202	45	0	0	0	29	F	ispj	2	\$	0	C		0	oul	non	non
204	69	0	N	N	24	F	ispj	0	\$	0	C		0	non	non	non
206	45	0	0	0	24	F	ispj		S	0	C		0	oui	non	non
207	45	0	0	0	25	F	ispj		S	0	C	ļ		out	non	non
209	45	0	0	0	26		ispi	5	Р	15	С	<u> </u>	0	non	non	non
210	69	0	N	N	18	M	ispj			<u> </u>		<u> </u>	 			014
212	69	0	N	N	19	М	isp	1	Р	24	C		1	oui	oui	oui
213	69	N	N	0		M	isp			<u> </u>		 	 		205	0113
216	45	0	0	0	36	M	isp		S	0	C	 	1	oui	non	oui
217	69	0	N	N	24	F	isp		S	0	C	 	6	ouii	oui	non
218	45	0	0	0	28	M	isp	_	S	0	C		10	non	non	non
219	69	0	N	0	30	M	isp	3	C	37	С	<u> </u>	11	oui	non	11011

