
STANDING WAVES: A PHASE DIFFERENCE APPROACH

ABSTRACT

Atreatment of standing waves in one dimensional
Systems is presented based on an analysis of the
phase différence between the direct wave and the
reflected wave. The analysis leads to ail the proper-
ties of the standing waves, in particular, the inter-
nodal distance, normal modes of vibration, the am
plitude of the résultant wave as a function of posi
tion, and the rôle of multiple reflections from the
boundaries of the médium.

§1. INTRODUCTION

Standing waves are formed in fïnite Systems by interfér
ence between the direct wave and the wave reflected from

the boundary. A common example is that of harmonie
standingwaves in one-dimensional Systems suchas a string
fixed at both ends or an air column in a pipe. For deter-
mining an interférence pattern, the phase différence ap-
proachis mathematically the simplestand intuitively the
most appealing. Accordingly, standard texts use this ap-
proach for deducing interférencepatterns in a wide vari-
ety of situations except, unfortunately, for standingwaves.
The standard treatment is based on the résultant ampli
tude A as a function of position x for a string fixed at
both ends calculated by superposing two waves with
displacements given by A0 sin(kx - wt) and A0 sin(kx +
wt). While A(x)(= 2A0 sin kx), thus obtained, gives the
correct internodal distance and (combined with the bound
ary conditions) also the correct normal modes, students
often wonder why there is no référence to the phase différ
ence (either due to the path différence, or due to reflection
at the boundary) between the interfering waves, a factor
which they hâve been told plays a crucial rôle in interfér
ence. An equally crucial point is the omission of any réf
érence to the finite size of the médium [which only enters
the calculation of the normal modes but not of A(x)]. Ail
that seems to matter for the formation ofstanding waves is
that the interfering waves be travelling in opposite direc
tions. The treatment presented hère is based on the famil-
iar approach of the calculation of the phase différence be
tween the interfering waves, involving the finite size of
the médium at the very outset (§ 2). Since the phase dif
férence between adjacent maxima (or adjacent minima)
must be 2p radians, the expression for the phase différ
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ence immediately gives the internodal distance (§3) with-
out any référence to A(x). Next, in § 4, we consider three
Systems:

(a) a string fixed at both ends
(b) an air column in a pipe open at both ends
(c) an air column in a pipe closed at one end and open

at the other.

By combining the phase différences with the boundary
conditions we calculate the normal modes. This is fol-

lowed by the calculation of A(x). It would be seen that
the calculation of normal modes must précède the calcu
lation of A(x) because the phase différence dépends not
only on x but also on 6, the length of the médium. Then, in
§ 5, we discuss the effect of multiple reflections from the
boundaries of the médium. Finally,§ 6 contains some con-
cluding remarks.

§ 2. PHASE DIFFERENCE BETWEEN THE DIRECT WAVE

AND THE REFLECTED WAVE

x = 0

< x-

|

the médium

-> direct wave

->

reflected wave

Suppose the direct wave is represented by

y,(x,t) = Ajsin(kx - eût). (1)

At any point x the reflected wave, interfering with the direct
wave, will hâve the foliowing features:

(i) The reflected wave travels towards the négative x
direction whereas the direct wave travels towards

positive x.
(ii) The angular frequency co and the wave number k

are the same for the direct wave and the reflected

wave.
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(iii)

(iv)

Before arriving at theinterférence point x, there
flected wave will hâve travelled an extra distance
2(*-x).

The reflected wave will hâve suffered a phase
change 0r duetoreflection at theboundary B. The
value of <j>t is either zéro or 7C radians, depending
onthe natureof the boundary. Foreachof thethree
Systems, mentioned in § 1, 0r would be given its
appropriate value before analyzing the normal
modes and A(x) in § 4.

Ailof thefeatures (i) to (iv) are incorporated intothe re
flected wave represented by1

y2(x,t) = A2 sin[kx +2k(* - x) - cot + 0r]. (2)

Thus, the phase différence <f> between the two interfering
waves can be written as

0=<ftx) = 0(x) + 0r, (3)

where 0p is the phase différence due to path différence,
given by

0p = 2k«-x). (4)

§3. CALCULATION OFTHE INTERNODAL DISTANCE
Interms ofA,, A2 and f, the résultant amplitude A
is given by

A= VA,2 +\2 +2A,A2cos <f> (5)

Of spécial interest are pointsof maximum and minimum
values of A which, according to(5), are given by

MAXIMA 101 = 0,271,471..
MINIMA l0 = 7t,37C,57t.

(6)
(7)

Inthecontext ofstanding waves, minima arecalled nodes2
(N), and maxima are called antinodes (AN).
Since 0f in (3) isindependent of x, combining (6) and (7)
with (4) we find that the distance D between two adjacent
antinodes is equal to the distance between two adjacent
nodes,each beinggiven by

2p = A0 = A0 =2kD (8)

1Note that by rewriting (2) as y,(x,t) =A,sin(21tf -kx -wt +<p ), we
can see more clearly that the wave represented by (2) is travelling ïn the
négative x-direction.

ARC/ACTES DU COLLOQUE 1997

Using k = 2a, fromhère we get
X

D = a/2 (9)

Similarly, the distance d between a node and an adjacent
antinode is given by

n = A0= 2kd,

or, d = A/4. (10)

§ 4. NORMAL MODES OF VIBRATION

Normal modes of vibration are determined by using the
conditions imposed by the boundary. For a one-dimen-
sional System, atone of the two boundaries, the required
condition isautomatically satisfied by the appropriate value
of0r (which ishow 0r isdetermined inthe first place). At
the other boundary, the required condition issatisfied only
by imposing a restriction on the permitted wavelengths
(or frequencies). Wavelengths which obey the restriction
are called normal modes of vibration.

As mentionedin § 1, we will détermine the normal modes
for three Systems. In each case we will also calculate the
résultant amplitude A as a function of x.

(a) String fixed at both ends
Inthis case 0r is tc. So, from (3) and (4) we get

0 = 2k(* - x) + k

Using (11), in (6) and (7) weget

(H)

MAXIMA 2k(* -x) = 7C,37C,5tc (12)
MINIMA 2k(* -x) = 0,27C,4tc (13)
We requirebothboundaries x = 0 and x = t tobe nodes.
From (13), the boundary condition at x = l is seen to be
satisfied automatically (by virtue of0r =71). For x=0 to
be a node, (13)requires3

2k* = 27t, 47t, 67t. (14)

which gives l - n à (n = 1, 2,3...). (15)
2

For agiven 6, the restriction (15) on the permitted wave
lengths gives the normal modes ofthis System.

2It is évident from (5) that the amplitude at anode is zéro only if A =A,.

3 Notethat 2k/ =0 is not possible.
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Now, to détermine A as function of x, we use (11) and
(14) in (5) whence we obtain

A(x) = VA,2 + A22 - 2A,A2 cos2kx (16)

IfA, =A2 = A0, (16) takes a simpler and amore familiar
form (usingthe trigonométrie identity: 1- cos 2G = 2
sin29)

A(x) = 2A01 sinkx I (17)
Incidentally,using (11) and (14) in (2) we also notice that
the reflected wave is indeed correctly given by

y (x,t) = A sin(kx + eût); (18)

the form used in the standard treatment of standing waves.

However, in order to arrive at (18) we must use the condi
tion (14) for the normal modes, rather than the approach
used in the standard texts where (18) is used in order to
dérive A(x) and whence at the normal modes.

(b) Air column in a pipe open at both ends
In thiscase 0, = 0 which gives

0=2k(*-x). (19)

Both boundaries are required to be antinodes, governed
by (6). At x = £, the requirement of the antinode is auto
matically satisfied (by virtue of 0r = 0). At x = 0 the
requirement of the antinode once again leads to (14) and
(15) so that the normal modes of this System are the same
as those of (a). However, since (11) of (a) is différent
from (19) of (b), (16) and (17) for A(x) are replaced,
respectively, by

A(x) =A,2 +A22 +2A,A, cos 2kx (20)
=2A0I cos kx I if A,"= A2 =A0 (21)

Also, (18) is replaced by

y,(x,t) = -A, sin(kx + eût). (22)

4 This point is intuitively obvious but can also be proven in détail as
follows:

By following thesame argument asin §2 for fWR (which stands for the
phase différence betweenW andR,), we cansee that

0WR2=0RR4=^4R6
=^R,=-%3R5 =V?
= 2k* + 0r+ 0'r,

Note thatin thiscasethesign ofy2 is opposite to thatused
in the standard treatment of standing waves.

(c) Air column in a pipe open at one end and closed
at the other

x= 0 \-l

-> direct wave

<

reflected wave

Inthis case 0r = ksothat (11), (12) and (13) of (a) apply
also to (c). Furthermore, as in (a), the requirement that the
boundary x = l be a node is automatically satisfied by
virtue of 0r =7t. However, since now the boundary x=0
is requiredto be an antinode (whereas in (a), x = 0 was a
node), the normal nodes in (c) are obtained with the help
of(12):

2te=7C, 3tc, 57t.

or, t = n X (n=l,3,5...) À,
4 4

(23)

(24)

Using (11) and (23) in (5) we find that (20) and (21) for
A(x) and (22) for y2(x,t), found in (b), also apply to (c).

§ 5. THE EFFECT OF MULTIPLE REFLECTIONS

If we dénote the direct wave by W and the successive re
flected waves by R,, R2, R3... (where Rn dénotes a wave
whichhas undergone n reflections), the résultant wave is
obtained by the superposing W, Rp R,, R3....
The resuitof this superpositioncan be seen easily by rear-
ranging the différent contributions as (W + R,) + (R2 +
R3) +(R4 +R5) + and by noting that each successive
termin this sum is in phase4 with the previous one. Thus,
the résultant amplitude is simply the sum of the ampli
tudes of (W +R,),(R2 + R3), (R4 + R5) etc., i.e., multiple
reflections onlyreinforcethe interférencepattem produced

where 0/ is thephase change onreflections attheboundary x =0.
In (a) and(b), 2k* =even multiple of p. In (a),0r = <j>\ = n;
in(b), <ps = ft =0. In (c), 2k/ =odd multiple of n; fy =n and <pr' =0.
Thus, in'(a), (b) as well as (c), we find that (W, R,, R4...) are in phase,
and so are (R,, R3, R,...).
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bvCW +R^. Ofcourse, each reflection being partial, the
amplitude ofsuccessive reflections becomes progressively
smaller.

§ 6. CONCLUDING REMARKS

We hâveshownthat aH aspectsof standing waves in one-
dimensional Systems can be deduced on the basis of the
phase différence between the direct wave and the reflected
wave.The treatmentalso bringsout moreclearlythe rôle
played by the finite size of the médium, an élément crucial
to the formation of standing waves. As an added bonus,
we are alsoable to see that the effectof the ever-present
multiple reflections is simply to reinforce the interférence
pattern formed by the direct wave Wand the wave Rj which
suffers only one reflection.
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Theapproach used in the standard texts is inadéquate in
manyrespects, includinga complètelack of justification
for writing the reflected wave as A0 sin(kx + cot), for the
string and -A0sin(kx + ©t) for the air-column. Students
already use the phase différence approach in numerous
examples of interférence such as double slit, thin films,
interferometers, diffraction grating etc. So, why not use
thesameforstandingwaves,especiallyin viewof thesim-
plicity of the accompanying mathematics?
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